Log in

Electrochemical behavior of gallium electrodeposition and inhibition of hydrogen evolution reaction in alkaline electrolyte

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The gallium electrowinning process is always accompanied by hydrogen evolution reaction that results in low current efficiency (CE). In this manuscript, cyclic voltammetry and chronoamperometry studies were carried out to investigate the gallium cathode behavior under various conditions and explore the parameter that is beneficial to improve the CE. The CE of the lead and copper cathodes was higher, while gallium deposited on the titanium, SUS316, and SUS304 cathodes was readily separated. Increasing the overpotential and gallium concentration or decreasing the pH within a certain range was all beneficial to improve the CE, while the temperature had no significant effect on the CE. Kinetic studies of gallium electrodeposition were carried out. The gallium electrodeposition process was determined as mixed control and forced convection is expected to further improve the CE. The apparent activation energy and kinetic current from the electrochemical reactions were determined to be 23.335 kJ mol−1 and 47.6 mA, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kurtuldu F, Mutlu N, Boccaccini AR, Galusek D (2022) Gallium containing bioactive materials: a review of anticancer, antibacterial, and osteogenic properties. Bioact Mater 17:125–146. https://doi.org/10.1016/j.bioactmat.2021.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shivani KD, Ghosh A, Kumar M (2022) A strategic review on gallium oxide based power electronics: recent progress and future prospects. Mater Today Commun 33:104244. https://doi.org/10.1016/j.mtcomm.2022.104244

    Article  CAS  Google Scholar 

  3. Akyildiz K, Kim J-H, So J-H, Koo H-J (2022) Recent progress on micro- and nanoparticles of gallium-based liquid metal: from preparation to applications. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2022.09.046

    Article  Google Scholar 

  4. Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y (2021) Toward emerging gallium oxide semiconductors: a roadmap. Fundam Res 1:697–716. https://doi.org/10.1016/j.fmre.2021.11.002

    Article  CAS  Google Scholar 

  5. Eheliyagoda D, Zeng X, Wang Z, Albalghiti E, Li J (2019) Forecasting the temporal stock generation and recycling potential of metals towards a sustainable future: the case of gallium in China. Sci Total Environ 689:332–340. https://doi.org/10.1016/j.scitotenv.2019.06.413

    Article  CAS  PubMed  Google Scholar 

  6. Lu F, **ao T, Lin J, Ning Z, Long Q, **ao L, Huang F, Wang W, **ao Q, Lan X, Chen H (2017) Resources and extraction of gallium: a review. Hydrometallurgy 174:105–115. https://doi.org/10.1016/j.hydromet.2017.10.010

    Article  CAS  Google Scholar 

  7. Kou Z, Bian W, Wang C (2022) Preparation of novel amidoxime resin and its performance in gallium (III) extraction from Bayer liquor. Chem Eng J Adv 11:100317. https://doi.org/10.1016/j.ceja.2022.100317

    Article  CAS  Google Scholar 

  8. Zhang K, Qiu L, Tao J, Zhong X, Lin Z, Wang R, Liu Z (2021) Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272. Hydrometallurgy 205:105722. https://doi.org/10.1016/j.hydromet.2021.105722

    Article  CAS  Google Scholar 

  9. Nayak S, Devi N (2017) Studies on extraction of gallium (III) from chloride solution using Cyphos IL 104 and its removal from photodiodes and red mud. Hydrometallurgy 171:191–197. https://doi.org/10.1016/j.hydromet.2017.04.016

    Article  CAS  Google Scholar 

  10. de Oliveira RP, Benvenuti J, Espinosa DCR (2021) A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes. Renew Sustain Energy Rev 145:111090. https://doi.org/10.1016/j.rser.2021.111090

    Article  CAS  Google Scholar 

  11. Qin S, Sun Y, Li Y, Wang J, Zhao C, Gao K (2015) Coal deposits as promising alternative sources for gallium. Earth Sci Rev 150:95–101. https://doi.org/10.1016/j.earscirev.2015.07.010

    Article  CAS  Google Scholar 

  12. Zhao Z, Yang Y, **ao Y, Fan Y (2012) Recovery of gallium from Bayer liquor: a review. Hydrometallurgy 125–126:115–124. https://doi.org/10.1016/j.hydromet.2012.06.002

    Article  CAS  Google Scholar 

  13. Ding W, Bao S, Zhang Y, **ao J (2022) Mechanism and kinetics study on ultrasound assisted leaching of gallium and zinc from corundum flue dust. Miner Eng 183:107624. https://doi.org/10.1016/j.mineng.2022.107624

    Article  CAS  Google Scholar 

  14. Xue B, Wei B, Ruan L, Li F, Jiang Y, Tian W, Su B, Zhou L (2019) The influencing factor study on the extraction of gallium from red mud. Hydrometallurgy 186:91–97. https://doi.org/10.1016/j.hydromet.2019.04.005

    Article  CAS  Google Scholar 

  15. Lu F, **ao T, Lin J, Li A, Long Q, Huang F, **ao L, Li X, Wang J, **ao Q, Chen H (2018) Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure. Hydrometallurgy 175:124–132. https://doi.org/10.1016/j.hydromet.2017.10.032

    Article  CAS  Google Scholar 

  16. Bautista RG (2003) Processing to obtain high-purity gallium. JOM 55:23–26. https://doi.org/10.1007/s11837-003-0155-2

    Article  CAS  Google Scholar 

  17. Mochalov L, Logunov A, Vorotyntsev V (2021) Preparation of gallium of the special purity for semiconductors and optoelectronics. Sep Purif Technol 258:118001. https://doi.org/10.1016/j.seppur.2020.118001

    Article  CAS  Google Scholar 

  18. Liu L, Wang M, Wang Z, Zhang Y (2015) Corrosion behavior of 316L stainless steel anode in alkaline sulfide solutions and the consequent influence on Ga electrowinning. Hydrometallurgy 157:285–291. https://doi.org/10.1016/j.hydromet.2015.09.009

    Article  CAS  Google Scholar 

  19. Liu L, Wang M, Wang Z, Zhang Y (2014) The influence of impurities on Ga electrowinning: vanadium and iron. Hydrometallurgy 146:76–81. https://doi.org/10.1016/j.hydromet.2014.03.009

    Article  CAS  Google Scholar 

  20. Dorin R, Frazer EJ (1988) The electrodeposition of gallium from synthetic Bayer-process liquors. J Appl Electrochem 18:134–141. https://doi.org/10.1007/BF01016217

    Article  CAS  Google Scholar 

  21. Liu Z, Guo X, Tian Q, Zhang L (2022) A systematic review of gold extraction: fundamentals, advancements, and challenges toward alternative lixiviants. J Hazard Mater 440:129778. https://doi.org/10.1016/j.jhazmat.2022.129778

    Article  CAS  PubMed  Google Scholar 

  22. Kozin LF, Gaidin AV (2009) Kinetics and mechanism of gallium discharge and ionization in an alkaline solution of potassium fluoride. Russ J Appl Chem 82:406–415. https://doi.org/10.1134/S1070427209030124

    Article  CAS  Google Scholar 

  23. Liu L, Wang M, Wang Z, Zhang Y (2015) The corrosion resistance of Ni anode and Ga electrowinning in alkaline sulfide solutions. J Appl Electrochem 45:1255–1263. https://doi.org/10.1007/s10800-015-0885-1

    Article  CAS  Google Scholar 

  24. Gladyshev S, Akcil A, Abdulvaliev R, Tastanov Y, Beisembekova K, Temirova S (2013) Kinetic study of gallium electrochemical reduction in alkaline solution. Hydrometallurgy 140:95–101. https://doi.org/10.1016/j.hydromet.2013.08.012

    Article  CAS  Google Scholar 

  25. Zhang L, Guo X-Y, Tian Q-H, Li D, Zhong S-P, Qin H (2022) Improved thiourea leaching of gold with additives from calcine by mechanical activation and its mechanism. Miner Eng 178:107403. https://doi.org/10.1016/j.mineng.2022.107403

    Article  CAS  Google Scholar 

  26. Zhang J, An M, Chen Q, Liu A, Jiang X, Ji S, Lian Y, Wen X (2016) Electrochemical study of the diffusion and nucleation of gallium(III) in [Bmim][TfO] ionic liquid. Electrochim Acta 190:1066–1077. https://doi.org/10.1016/j.electacta.2016.01.027

    Article  CAS  Google Scholar 

  27. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford

    Google Scholar 

  28. Ciro E, Dell’Era A, Pasquali M, Lupi C (2020) Indium electrowinning study from sulfate aqueous solution using different metal cathodes. J Environ Chem Eng 8:103688. https://doi.org/10.1016/j.jece.2020.103688

    Article  CAS  Google Scholar 

  29. Ciro E, Dell’Era A, Pasquali M, Lupi C (2021) Indium electrowinning kinetics on titanium, aluminum and copper supports from sulfate solution. J Electroanal Chem 885:115099. https://doi.org/10.1016/j.jelechem.2021.115099

    Article  CAS  Google Scholar 

  30. Hong B, Wang Y, Wei X, Huang Q, Wang X, Fujita T, Wei Y (2020) EQCM study on the electrochemical redox behavior of gallium in alkaline solution. Hydrometallurgy 194:105344. https://doi.org/10.1016/j.hydromet.2020.105344

    Article  CAS  Google Scholar 

  31. Dobosz A, Daeneke T, Zavabeti A, Zhang BY, Orrell-Trigg R, Kalantar-Zadeh K, Wójcik A, Maziarz W, Gancarz T (2019) Investigation of the surface of Ga-Sn-Zn eutectic alloy by the characterisation of oxide nanofilms obtained by the touch-printing method. Nanomaterials (Basel). https://doi.org/10.3390/nano9020235

    Article  PubMed  Google Scholar 

  32. Hong J, Xu Z, Li D, Guo X, Yu D, Tian Q (2020) A pilot study: efficient electrowinning of tellurium from alkaline solution by cyclone electrowinning technology. Hydrometallurgy 196:105429. https://doi.org/10.1016/j.hydromet.2020.105429

    Article  CAS  Google Scholar 

  33. Xu Z, Guo X, Tian Q, Li D, Zhang Z, Zhu L (2020) Electrodeposition of tellurium from alkaline solution by cyclone electrowinning. Hydrometallurgy 193:105316. https://doi.org/10.1016/j.hydromet.2020.105316

    Article  CAS  Google Scholar 

  34. Guo X, Qin H, Tian Q, Li D (2020) Recovery of metals from waste printed circuit boards by selective leaching combined with cyclone electrowinning process. J Hazard Mater 384:121355. https://doi.org/10.1016/j.jhazmat.2019.121355

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 52074363, 52104355, 51922108, and U20A20273), National Key R&D Program of China (Grant No. 2019YFC1907402).

Author information

Authors and Affiliations

Authors

Contributions

ZL carried out experiments. ZL and XG wrote the main manuscript text. XG, QT, and ZX provided the experimental plan. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Qinghua Tian or Zhipeng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Guo, X., Tian, Q. et al. Electrochemical behavior of gallium electrodeposition and inhibition of hydrogen evolution reaction in alkaline electrolyte. J Appl Electrochem 53, 847–860 (2023). https://doi.org/10.1007/s10800-022-01825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01825-4

Keywords

Navigation