Log in

COF-42 as sensory material for voltammetric determination of Cu(II) ion: optimizing experimental condition via central composite design

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) COF-42 has been prepared and the COF-42/carbon paste electrode (COF-42/CPE) has been applied as a voltammetric sensor for determining copper(II). Different characterization procedures (FTIR, XRD, SEM/EDX, BET, cyclic voltammetry, and electrochemical impedance) have been implemented on the prepared COF-42 and the constructed COF-42/CPE. The central composite design has been applied for optimizing the production and function circumstances of this sensor. The existence of various functional groups in the structure of the COF-42 makes this COF greatly efficient in recognizing Cu(II) and creating stable complexes with it. The COF-42 possesses high porosity and contains various binding sites for strong interaction with copper(II), so the existence of the COF-42 in the sensor assembly decreases the mass transfer resistance in the electrode matrix and also eventuates to the precipitation of a large amount of copper analyte. The precise selection of COF and optimization of sensor preparation and operating conditions has resulted in high sensitivity and selectivity for the constructed sensor. A proper mechanism for sensor performance has been presented and confirmed by SEM/EDX and electrochemical procedures. The linear response range of the fabricated sensor is from 0.001 to 10.0 μM. The detection limit is 2.5 × 10−10 M. The analytical performance features of the proposed sensor have been explored by performing different statistical tests. Sensor performance is not affected by the presence of most potentially interfering species. The interference of silver(I) and mercury(II) was also removed by using a masking agent. Based on the experimental results and statistical tests, it was found that when using the masking agent, the precision and accuracy of the method remains at its previous appropriate value. The ability of the sensor has been confirmed in the analysis of real samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chang S, **e W, Yao C, Xu G, Zhang S, Xu Y, Ding X (2021) Construction of 2D porphyrin-based covalent organic framework as adsorbent for organic dyes removal and carbon dioxide adsorption. J Solid State Chem 304:122577

    Article  CAS  Google Scholar 

  2. Xu S, Richter M, Feng X (2021) Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc Mater Res 2:252–265

    Article  CAS  Google Scholar 

  3. Nguyen HL, Hanikel N, Lyle SJ, Zhu C, Proserpio DM, Yaghi OM (2020) A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J Am Chem Soc 142:2218–2221

    Article  CAS  PubMed  Google Scholar 

  4. Guan Q, Wang G, Zhou L, Li W, Dong Y (2020) Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Adv 2:3656–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuan S, Li X, Zhu J, Zhang G, Puyvelde PV, Bruggen BV (2019) Covalent organic frameworks for membrane separation. Chem Soc Rev 48:2665–2681

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Feng X, Shao P, Chen J, Li C, Jayakumar S, Yang Q (2019) Synthesis of covalent organic frameworks via in-situ salen skeleton formation for catalytic applications. J Mater Chem A 7:5482–5492

    Article  CAS  Google Scholar 

  7. Zhu Q, Wang X, Clowes R, Cui P, Chen L, Little MA, Cooper AI (2020) 3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes. J Am Chem Soc 142:16842–16848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen HL, Gropp C, Ma Y, Zhu C, Yaghi OM (2020) 3D covalent organic frameworks selectively crystallized through conformational design. J Am Chem Soc 142:20335–20339

    Article  CAS  Google Scholar 

  9. Guan X, Chen F, Fang Q, Qiu S (2020) Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev 49:1357–1384

    Article  CAS  PubMed  Google Scholar 

  10. Nagai A (2020) Covalent organic frameworks. Jenny Stanford Publishing Private Limited, Singapore

    Google Scholar 

  11. Lyle SJ, Popp TMO, Waller PJ, Pei X, Reimer JA, Yaghi OM (2019) Multi-step solid-state organic synthesis of carbamate-linked covalent organic frameworks. J Am Chem Soc 141:11253–11258

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S (2019) Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem Soc Rev 48:5266–5302

    Article  CAS  PubMed  Google Scholar 

  13. Li D, Li S, Huang J, Yan Y, Zhang S, Tang X, Fan J, Zheng S, Zhang W, Cai S (2021) A recyclable bipyridine-containing covalent organic framework-based QCM sensor for detection of Hg(II) ion in aqueous solution. J Solid State Chem 302:122421

    Article  CAS  Google Scholar 

  14. Liang X, Ni Z, Zhao L, Ge B, Zhao H, Li W (2021) Multifunctional triphenylbenzene-based polyimide covalent organic framework with absolute eclipsed stacking models for fluorescence detecting of Fe3+ and electrochemical detecting of Pb2+. Microchem J 170:106663

    Article  CAS  Google Scholar 

  15. Liu T, Cui L, Zhao H, Zhang X (2020) In situ generation of regularly ordered 2D ultrathin covalent organic framework films for highly sensitive photoelectrochemical bioanalysis. ACS Appl Mater Interfaces 12:47090–47098

    Article  CAS  PubMed  Google Scholar 

  16. Wang M, Guo H, Xue R, Guan Q, Zhang J, Zhang T, Sun L, Yang F, Yang W (2021) A novel electrochemical sensor based on MWCNTs-COOH/metal-covalent organic frameworks (MCOFs)/Co NPs for highly sensitive determination of DNA base. Microche J 167:106336

    Article  CAS  Google Scholar 

  17. Zhao X, Guo H, Xue R, Wang M, Guan Q, Fan T, Yang W, Yang W (2021) Electrochemical sensing and simultaneous determination of guanine and adenine based on covalent organic frameworks/NH2-rG/MoS2 modified glassy carbon electrode. Microchem J 160:105759

    Article  CAS  Google Scholar 

  18. Benedetto GED, Masi SD, Pennetta A, Malitesta C (2019) Response surface methodology for the optimization of electrochemical biosensors for heavy metals detection. Biosensors 9:26. https://doi.org/10.3390/bios9010026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korolev I, Altınkaya P, Halli P, Hannula P, Yliniemi K, Lundström M (2018) Electrochemical recovery of minor concentrations of gold from cyanide-free cupric chloride leaching solutions. J Clean Prod 186:840–850

    Article  CAS  Google Scholar 

  20. Huang X, Sun C, Feng X (2020) Crystallinity and stability of covalent organic frameworks. Sci China Chem 63:1367–1390

    Article  CAS  Google Scholar 

  21. Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chem 7:905–912

    Article  CAS  Google Scholar 

  22. Zhu L, Zhang Y (2017) Crystallization of covalent organic frameworks for gas storage applications. Molecules 22:1149. https://doi.org/10.3390/molecules22071149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei D, Zhang A, Aye Y, Wang X (2020) Adsorption properties of hydrated Cr3+ ions on schiff-base covalent organic frameworks: a DFT study. Chem Asian J 15:1140–1146

    Article  CAS  PubMed  Google Scholar 

  24. Lu Q, Ma Y, Li H, Guan X, Yusran Y, Xue M, Fang Q, Yan Y, Qiu S, Valtchev V (2018) Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew Chem Int Ed 57:6042–6048

    Article  CAS  Google Scholar 

  25. Gottschling K, Stegbauer L, Savasci G, Prisco NA, Berkson ZJ, Ochsenfeld C, Chmelka BF, Lotsch BV (2019) Molecular insights into carbon dioxide sorption in hydrazonebased covalent organic frameworks with tertiary amine moieties. Chem Mater 31:1946–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Uribe-Romo FJ, Doonan C, Furukawa H, Oisaki K, Yaghi OM (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133:11478–11481

    Article  CAS  PubMed  Google Scholar 

  27. Ding S, Cui X, Feng J, Lu G, Wang W (2017) Facile synthesis of –C=N– linked covalent organic frameworks under ambient conditions. Chem Commun 53:11956–11959

    Article  CAS  Google Scholar 

  28. Fan H, **e Y, Li J, Zhang L, Zheng Q, Zhang G (2018) Ultra-high selectivity COF-based membranes for biobutanol production. J Mater Chem A 6:17602–17611

    Article  CAS  Google Scholar 

  29. Wang J, Li N, Xu Y, Pang H (2020) Two-dimensional MOF and COF nanosheets: synthesis and applications in electrochemistry. Chem Eur J 26:6402–6422

    Article  CAS  PubMed  Google Scholar 

  30. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  31. Irving H, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc. https://doi.org/10.1039/JR9530003192

    Article  Google Scholar 

  32. Gendy EA, Ifthikar J, Ali J, Oyekunle DT, Elkhlifia Z, Shahib II, Khodair AI, Chen Z (2021) Removal of heavy metals by covalent organic frameworks (COFs): a review on its mechanism and adsorption properties. J Environ Chem Eng 9:105687

    Article  CAS  Google Scholar 

  33. Ding S, Dong M, Wang Y, Chen Y, Wang H, Su C, Wang W (2016) A thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J Am Chem Soc 138:3031–3037

    Article  CAS  PubMed  Google Scholar 

  34. Ma L, Zhang X, Ikram M, Ullah M, Wu H, Shi K (2020) Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem Eng J 395:125216

    Article  CAS  Google Scholar 

  35. Wang Y, Wu Y, **e J, Hu X (2013) Metal–organic framework modified carbon paste electrode for lead sensor. Sens Actuators B Chem 177:1161–1166

    Article  CAS  Google Scholar 

  36. Zhang Y, Yu H, Liu T, Li W, Hao X, Lu Q, Liang X, Liu F, Liu F, Wang C, Yang C, Zhu H, Lu G (2020) Highly sensitive detection of Pb2+ and Cu2+ based on ZIF-67/MWCNT/Nafion-modified glassy carbon electrode. Anal Chim Acta 1124:166–175

    Article  CAS  PubMed  Google Scholar 

  37. Skene WG, Lehn JP (2004) Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. PNAS 101:8270–8275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, 6th edn. Pearson Education Limited, Harlow, p 117

    Google Scholar 

  39. Speight JG (2005) Lange’s handbook of chemistry, 6th edn. McGraw-Hill, New York, p 1.402

    Google Scholar 

  40. Speight JG (2005) Lange’s handbook of chemistry, 6th edn. McGraw-Hill, New York, p 1.331

    Google Scholar 

  41. Speight JG (2005) Lange’s handbook of chemistry, 6th edn. McGraw-Hill, New York, p 1.358

    Google Scholar 

  42. Speight JG (2005) Lange’s handbook of chemistry, 6th edn. McGraw-Hill, New York, p 1.31

    Google Scholar 

  43. Watanabe K, Tanaka T, Iburaim A, Itagaki M (2001) Effects of masking agents on the separation of copper(ii) from iron(iii) by continuous solvent extraction with 8-hydroxyquinoline. Anal Sci 17:671–674

    Article  CAS  PubMed  Google Scholar 

  44. Sreekumar NV, Nazareth RA, Narayana B, Hegde P, Manjunatha BR (2002) Indirect complexometric determination of mercury(II) using potassium bromide as selective masking agent. Microchim Acta 140:63–67

    Article  CAS  Google Scholar 

  45. Shi X, Huang S, Yeap TS, Ong SL, Ng HY (2020) A method to eliminate bromide interference on standard COD test for bromide-rich industrial wastewater. Chemosphere 240:124804

    Article  CAS  PubMed  Google Scholar 

  46. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  47. Sotomayor FJ, Cychosz KA, Thommes M (2018) Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc Mater Surf Res 3:34–50

    Google Scholar 

  48. Sing KSW, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorp Sci Technol 22:773–782

    Article  CAS  Google Scholar 

  49. Field LD, Sternhell S, Kalman JR (2013) Organic structures from spectra, 5th edn. Wiley, Hoboken, p 32

    Google Scholar 

  50. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2015) Introduction to spectroscopy, 5th edn. Cengage Learning, Stamford, p 52

    Google Scholar 

  51. Pisarenko LM, Nikitin AV (1995) Dipole moments of the carbonyl groups in cyclic β-diketones from IR spectroscopy data. Russ Chem Bull 44:670–677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Zanganeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanganeh, A.R. COF-42 as sensory material for voltammetric determination of Cu(II) ion: optimizing experimental condition via central composite design. J Appl Electrochem 53, 765–780 (2023). https://doi.org/10.1007/s10800-022-01798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01798-4

Keywords

Navigation