Log in

Effects of hemoglobin concentration on retinochoroidal vascular plexuses: an optical coherence tomography angiography study

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate retinal and choroidal microvascular structures using optical coherence tomography angiography (OCTA) in patients with anemia and polycythemia vera (PV).

Methods

In this prospective study, 142 patients (142 eyes) were enrolled and divided into 3 groups: the anemia (n = 56), PV (n = 46), and healthy groups (n = 40, controls). For each patient, 6- × 6-mm macular angiography images were taken using an OCTA system (optovue, Inc., Fremont). For each eye analyzed, the software automatically measured vessel density (VD) in the superficial capillary plexus (SCP), deep capillary plexus (DCP; superior, nasal, temporal, and inferior quadrants), choriocapillaris (CC), and foveal avascular zone (FAZ).

Results

The OCTA analysis revealed that the VD of the DCP was significantly decreased in the superior and inferior hemispheres of the whole area, multiple quadrants of the perifovea, and CC with a 1-mm2 flow area in the anemia group compared with the PV group (p < 0.017), but the VD of the SCP did not show any significant difference in any quadrant between the two groups (p > 0.017). When compared with the healthy group, the anemia and PV groups showed a significant difference in multiple quadrants of the parafovea and temporal quadrant of the perifovea in the VD of the SCP and CC with a 2-mm2 flow area (p < 0.017). The FAZ and non-flow area did not manifest any significant difference between the groups (p > 0.017). The hemoglobin concentrations in the anemia, PV, and healthy groups were 8.11 ± 1.33, 17.5 ± 1.2, and 15.6 ± 0.73 g/dL, respectively, indicating statistically significant differences between the groups (p < 0.001).

Conclusion

In this study, quantitative OCTA analysis revealed a higher tendency for retinal and choroidal microvascular morphological changes in patients with anemia and PV. The outcomes of the current investigation can provide new insights into the retinal and choroidal pathophysiologies found in patients with hemoglobin abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Morris CM, Candy JM, Oakley AE et al (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat (Basel) 144:235–257

    Article  CAS  PubMed  Google Scholar 

  2. He X, Hanh P, Iacovelli J et al (2007) Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 26:649–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Todorich B, Pasquini JM, Garcia CI et al (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  4. DeMaman AS, Melo P, Homem JM et al (2010) Effectiveness of iron repletion in the diet for the optic nerve development of anaemic rats. Eye (Lond) 24:901–908

    Article  CAS  PubMed  Google Scholar 

  5. DeMaman AS, Homem JM, Lachat JJ (2008) Early iron deficiency produces persistent damage to visual tracts in Wistar rats. Nutr Neurosci 11:283–289

    Article  CAS  PubMed  Google Scholar 

  6. Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5(34):1–19

    Google Scholar 

  7. Youdim MB (2008) Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res 14:45–56

    Article  CAS  PubMed  Google Scholar 

  8. Schichi H (1969) Microsomal electron transport system of bovine retinal pigment epithelium. Exp Eye Res 8:60–68

    Article  Google Scholar 

  9. Duzgun E, Demir N, Alkan AA et al (2022) Retinochoroidal vascular plexuses in patients with iron deficiency anaemia. Clin Exp Optom 105:326–332

    Article  PubMed  Google Scholar 

  10. Simsek A, Tekin M, Bilen A et al (2016) Evaluation of choroidal thickness in children with iron deficiency anemia. Investig Ophthalmol Vis Sci 57:5940–5944

    Article  CAS  Google Scholar 

  11. Kacer B, Hattenbach LO, H¨orle S, et al (2001) Central retinal vein occlusion and nonarteritic ischemic optic neuropathy in 2 patients with mild iron deficiency anemia. Ophthalmologica 215:128–131

    Article  CAS  PubMed  Google Scholar 

  12. Carraro MC, Rossetti L, Gerli GC (2001) Prevalence of retinopathy in patients with anemia or thrombocytopenia. Eur J Haematol 67:238–244

    Article  CAS  PubMed  Google Scholar 

  13. Spivak JL (2019) How I treat polycythemia vera. Blood 134:341–352

    Article  CAS  PubMed  Google Scholar 

  14. Dameshek W (1951) Some speculations on the myeloproliferative syndromes [editorial]. Blood, pp 6372–5

  15. Liisborg C, Hasselbalch HC, Sørensen TL (2020) Ocular manifestations in patients with philadelphia-negative myeloproliferative neoplasms. Cancers (Basel) 12:573

    Article  PubMed  Google Scholar 

  16. Barabas AP, Offen DN, Meinhard EA (1973) The arterial complications of polycythaemia vera. Br J Surg 60:183–187

    Article  CAS  PubMed  Google Scholar 

  17. Esmon CT (2009) Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 23:225e9

    Article  Google Scholar 

  18. Jiaa Y, Bailey S, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402

    Google Scholar 

  19. Alnawaiseh M, Eckardt F, Mihailovic N et al (2021) Ocular perfusion in patients with reduced left ventricular ejection fraction measured by optical coherence tomography angiography. Graefe’s Arch Clin Exp Ophthalmol 259:3605–3611

    Article  Google Scholar 

  20. Tefferi A, Vannucchi AM, Barbui T (2021) Polycythemia vera: historical oversights, diagnostic details, and therapeutic views. Leukemia 35:3339–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang HS, Joe SG, Kim JG (2013) Delayed choroidal and retinal blood flow in polycythaemia vera patients with transient ocular blindness: a preliminary study with fluorescein angiography. Br J Haematol 161:745–747

    Article  PubMed  Google Scholar 

  22. Rao K, Shenoy SB, Kamath Y (2016) Central retinal artery occlusion as a presenting manifestation of polycythaemia vera. BMJ Case Rep 2016:3–5

    Google Scholar 

  23. Tan SS, Samsudin A, Thavaratnam LK (2022) Lights off, lights on: amaurosis fugax in polycythemia. Cureus 14:10–14

    Google Scholar 

  24. Regensburger J, Rauchegger R, Loacker L (2022) Intermittent retinal artery occlusions as the first clinical manifestation of polycythemia vera: a case report. BMC Ophthalmol 22:1–6

    Article  Google Scholar 

  25. Menke MN, Feke GT, McMeel JW (2008) Effect of plasmapheresis on hyperviscosity-related retinopathy and retinal hemodynamics in patients with Waldenstrom’s macroglobulinemia. Invest Ophthalmol Vis Sci 49:1157–1160

    Article  PubMed  Google Scholar 

  26. Akdoğan M, Dogan M, Gobeka HH et al (2022) Optical coherence tomography angiographic assessment of polycythaemia vera-related retinal microvascular morphological changes: a cross-sectional case-control study. Turkiye Klin J Ophthalmol 31:152–157

    Article  Google Scholar 

  27. Elstrott B, Khan L, Olson et al (2020) The role of iron repletion in adult iron deficiency anemia and other diseases. Eur J Haematol 104:153–161

    Article  CAS  PubMed  Google Scholar 

  28. Miller JL (2013) Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med 3:a011866

    Article  PubMed  PubMed Central  Google Scholar 

  29. Algarin C, Peirano P, Garrido M et al (2003) Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res 53:217–223

    Article  CAS  PubMed  Google Scholar 

  30. Korkmaz MF, Can ME, Kazancı EG (2020) Effects of iron deficiency anemia on peripapillary and macular vessel density determined using optical coherence tomography angiography on children. Graefe’s Arch Clin Exp Ophthalmol 258:2059–2068

    Article  CAS  Google Scholar 

  31. Hwang TS, Jia Y, Gao SS et al (2015) Optical coherence tomography angiography features of diabetic retinopathy. Retina 35:367–373

    Article  Google Scholar 

  32. Takase N, Nozaki M, Kato A et al (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383

    Article  PubMed  Google Scholar 

  33. de Carlo TE, Chin AT, Bonini Filho MA et al (2015) Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 35:2364–2370

    Article  PubMed  Google Scholar 

  34. Adhi M, Filho MA, Louzada RN et al (2016) Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:486–494

    Article  Google Scholar 

  35. Zhu J, Merkle CV, Bernucci MT et al (2017) Can OCT angiography be made a quantitative blood measurement tool? Appl Sci 7:687

    Article  PubMed  Google Scholar 

  36. Almeida OP, Flicker L (2001) The mind of a failing heart: a systematic review of the association between congestive heart failure and cognitive functioning. Intern Med J 31:290–295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SCD wrote the main manuscript SK, TF, and MYT reviewed the manuscript

Corresponding author

Correspondence to Selda Celik Dulger.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethical Committee of Ankara Etlik City Hospital.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik Dulger, S., Cevik Kaya, S., Fen, T. et al. Effects of hemoglobin concentration on retinochoroidal vascular plexuses: an optical coherence tomography angiography study. Int Ophthalmol 44, 117 (2024). https://doi.org/10.1007/s10792-024-03029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03029-5

Keywords

Navigation