Log in

Design and Implementation of MQIR Image Scaling

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The digital image representation model directly affects the performance of digital image processing based on the representation model. Most quantum image representations which are based on traditional digital images, require a large number of qubits, or the complicated and difficult operations of quantum image processing. In this paper, we record the value and position of each bit in the binary sequence to form a multimode quantum image representation (MQIR) based on three-dimensional coordinates, which effectively reduces the number of qubits required to store the image. However, the basic operations for traditional digital images (such as scale operations) cannot be applied to MQIR image. To solve this problem, this paper proposes the nearest-neighbor interpolation scaling schemes for MQIR image, then we design and implement the quantum image scaling circuits. Finally, the complexity analysis and experimental simulation results of the scaling circuits for MQIR image are given. The simulation results verify the correctness of the image scaling schemes and circuits for MQIR image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. In: Proceedings of the royal society of london. Series A:, Mathematical and physical sciences, vol. 439, pp 553–558 (1992)

  2. Shapiro, L.: Computer vision and image processing Academic Press (1992)

  3. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. International Journal of Applied Mathematics, 40(3) (2010)

  4. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, volume 5105, pages 137–147. International Society for Optics and Photonics (2003)

  5. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

  6. Zhang, Y., Lu, K., Gao, Y., Wang, M.: Neqr: a novel enhanced quantum representation of digital images. Quantum Inform. Process. 12 (8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inform. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. IBM Quantum: https://quantum-computing.ibm.com/. (2021)

  9. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for frqi and neqr. Quantum Inf. Process. 15(1), 37–64 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhou, R.G., Liu, X., Luo, J.: Quantum circuit realization of the bilinear interpolation method for gqir. Int. J. Theor. Phys. 56(9), 2966–2980 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zhou, R., Hu, W.W., Luo, G., Liu, X., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for ineqr. Quantum Inf. Process. 17(7), 1–37 (2018)

    Article  MathSciNet  Google Scholar 

  13. Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2(1), 31–39 (1983)

    Article  Google Scholar 

  14. Zhu, H.H., Chen, X.B., Yang, Y.X.: A multimode quantum image representation and its encryption scheme. Quantum Inf. Process. 20(9), 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  15. Zhu, H.H., Chen, X.B., Yang, Y.X.: Image preparations of multi-mode quantum image representation and their application on quantum image reproduction. Optik 251, 168321 (2022)

    Article  ADS  Google Scholar 

  16. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  17. Oliveira, A.N., de Oliveira, E.V.B., Santos, A.C., Villas-Boas, C.J.: Algoritmos quânticos com ibmq experience: Algoritmo de deutsch-jozsa. Revista Brasileira de Ensino de Física, 44 (2021)

  18. Venegas-Andraca, S.E., Ball, J.L.: Storing images in entangled quantum systems. ar**v preprint quant-ph/0402085 (2004)

  19. Puengtambol, W., Prechaprapranwong, P., Taetragool, U.: Implementation of quantum random walk on a real quantum computer. J. Phys. Conf. Ser. 1719, 012103 (2021). IOP Publishing

    Article  Google Scholar 

  20. Beth, T., Rötteler, M.: Quantum algorithms: Applicable algebra and quantum physics. In: Quantum information, pages 96–150. Springer (2001)

  21. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhou, R.G., Cheng, Y., Liu, D.: Quantum image scaling based on bilinear interpolation with arbitrary scaling ratio. Quantum Inf. Process. 18(9), 1–19 (2019)

    ADS  Google Scholar 

  23. Jiang, N., Wang, J., Yue, M.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum inform. Process. 14(11), 4001–4026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yan, F., Iliyasu, A.M., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16 (10), 5290–5338 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Feynman, R.P.: Quantum mechanical computers. Optics news 11 (2), 11–20 (1985)

    Article  Google Scholar 

  26. Su, J, Guo, X., Liu, C., Lu, S., Li, L.: An improved novel quantum image representation and its experimental test on ibm quantum experience. Sci. Rep. 11(1), 1–13 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Pan, J., Yan, Y. et al. Design and Implementation of MQIR Image Scaling. Int J Theor Phys 61, 66 (2022). https://doi.org/10.1007/s10773-022-05061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05061-6

Keywords

Navigation