Log in

Fault Tolerant Multi-Party Authenticated Quantum Conference Against Collective Noise

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the advent of new science and technology, teleconference, which allows multiple participants to communicate directly without being constrained by time and distance, is becoming extremely popular. We put forward two fault tolerant three-party authenticated quantum conference protocols based on channel-encryption against collective-dephasing noise and collective-rotation noise, respectively. Whereafter, we further extend these two protocols to the most common scenario containing n participants. Compared with existing quantum conference protocols, ours own three outstanding merits: firstly, these protocols can meet the requirements of the interactivity of quantum conference well, because the previously shared quantum key can be reused many times; secondly, we introduce an updating mechanism for withstanding the special entanglement attack effectively; and thirdly, an efficient method is presented to realize the distribution of multi-qubit entangled states under collective noise environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(12), 7–11 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Zhu, J.R., Zhang, C.M., Wang, Q.: Biased decoy-state reference-frame-independent quantum key distribution. Eur. Phys. J. D 71(12), 319 (2017)

    ADS  Google Scholar 

  3. Zhu, K.N., Zhou, N.R., Wang, Y.Q., Wen, X.J.: Semi-quantum key distribution protocols with GHZ states. Int. J. Theor. Phys. 57(12), 3621–3631 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann Phys. 1800520 (2019)

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  6. Zhao, X.L., Li, J.L., Niu, P.H., Ma, H.Y., Ruan, D.: Two-step quantum secure direct communication scheme with frequency coding. Chin. Phys. B 26(3), 030302 (2017)

    ADS  Google Scholar 

  7. Zheng, X.Y., Long, Y.X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quantum. Inf. Process. 18(5), 129 (2019)

    ADS  MathSciNet  Google Scholar 

  8. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Yu, Z.B., Gong, L.H., Zhu, Q.B., Cheng, S., Zhou, N.R.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55(7), 3147–3155 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser. Phys. Lett. 15(10), 105204 (2018)

    ADS  Google Scholar 

  11. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Qin, H.W., Dai, Y.W.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum. Inf. Process. 16(3), 64 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Wang, X.J., An, L.X., Yu, X.T., Zhang, Z.C.: Multilayer quantum secret sharing based on GHZ state and generalized Bell basis measurement in multiparty agents. Phys. Lett. A 381(38), 3282–3288 (2017)

    ADS  Google Scholar 

  14. Cao, W.F., Yang, Y.G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum. Inf. Process. 16 (3), 76 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Jiang, L.N.: Quantum teleportation under different collective noise environment. Int. J. Theor. Phys. 58(2), 522–530 (2019)

    MATH  Google Scholar 

  17. Chang, L.W., Zheng, S.H., Gu, L.Z., **ao, D., Yang, Y.X.: Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels. Chin. Phys. B 23(9), 090307 (2014)

    ADS  Google Scholar 

  18. Sun, L., Wu, S., Qu, Z., Wang, M., Wang, X.: The effect of quantum noise on two different deterministic remote state preparation of an arbitrary three-particle state protocols. Quantum. Inf. Process. 17(10), 283 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum. Inf. Process. 16(7), 170 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Gu, J., Hwang, T.: Improvement of “Novel multiparty quantum key agreement protocol with GHZ states” Int. J. Theor. Phys. 56(10), 3108–3116 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Chou, Y.H., Zeng, G.J., Chang, Z.H., Kuo, S.Y.: Dynamic group multi-party quantum key agreement. Sci. Rep. 8(1), 4633 (2018)

    ADS  Google Scholar 

  22. Zhao, X.Q., Zhou, N. R., Chen, H.Y., Gong, L.H.: Multiparty quantum key agreement protocol with entanglement swap**. Int. J. Theor. Phys. 58(2), 436–450 (2019)

    MATH  Google Scholar 

  23. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    ADS  Google Scholar 

  24. Song, Y., Li, Z.H., Li, Y.M.: A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum. Inf. Process. 17(9), 244 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Qin, H.W., Tang, W.K.S., Tso, R.: Multiparty to multiparty quantum secret sharing. Mod. Phys. Lett. B 32(29), 1850350 (2018)

    ADS  MathSciNet  Google Scholar 

  26. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)

    ADS  Google Scholar 

  27. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China. Phys. Mech. Astron. 62 (7), 070301 (2019)

    Google Scholar 

  28. Li, X. H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24(1), 23 (2007)

    ADS  Google Scholar 

  29. Gu, B., Li, C.Q., Chen, Y.L.: Multiparty quantum secret conference based on quantum encryption with pure entangled states. Chin. Phys. B 18(6), 2137 (2009)

    ADS  Google Scholar 

  30. Yang, Y.G., Wang, Y.H., Wen, Q.Y.: Quantum broadcast communication with authentication. Chin. Phys. B 19(7), 070304 (2010)

    ADS  Google Scholar 

  31. Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad. Chin. Phys. B 25(8), 080308 (2016)

    ADS  Google Scholar 

  32. Yu, Y., Zha, X.W., Li, W.: Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state. Quantum. Inf. Process. 16(2), 41 (2017)

    ADS  MATH  Google Scholar 

  33. Cao, G., Jiang, M.: Multi-party quantum dialogue protocol based on multi-particle GHZ states. In: 2017 Chinese Automation Congress (CAC), pp 1614–1618. IEEE, **an (2017)

  34. Banerjee, A., Thapliyal, K., Shukla, C., Pathak, A.: Quantum conference. Quantum. Inf. Process. 17(7), 161 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.S., Li, C.F., Guo, G.C.: Quantum key distribution via quantum encryption. Phys. Rev. A 64(2), 024302 (2001)

    ADS  MathSciNet  Google Scholar 

  36. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: An effective attack on the quantum key distribution protocol based on quantum encryption. In: International Conference on Information Security and Cryptology, pp 302–312. Springer, Seoul (2005)

  37. Yang, Y.G., Wen, Q.Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum. Inf. 7(06), 1249–1254 (2009)

    MATH  Google Scholar 

  38. Guo, F.Z., Gao, F., Wen, Q.Y., Zhu, F.C.: A two-step channel-encrypting quantum key distribution protocol. Int. J. Quantum. Inf. 8(06), 1013–1022 (2010)

    MATH  Google Scholar 

  39. Huang, W., Wen, Q.Y., Jia, H.Y., Qin, S.J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)

    ADS  Google Scholar 

  40. Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China. Phys. Mech. Astron. 58(4), 1–10 (2015)

    Google Scholar 

  41. Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentixcation. Phys. Rev. A 73(4), 042305 (2006)

    ADS  Google Scholar 

  42. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin. Phys. Lett. 28 (2), 020303 (2011)

    ADS  Google Scholar 

  43. Lin, C.Y., Yang, C.W., Hwang, T.: Authenticated quantum dialogue based on Bell states. Int. J. Theor. Phys. 54(3), 780–786 (2015)

    MATH  Google Scholar 

  44. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    ADS  Google Scholar 

  45. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swap** protocol to design quantum repeater in IBM quantum computer. Quantum. Inf. Process. 18(4), 108 (2019)

    ADS  MATH  Google Scholar 

  46. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 062316 (2011)

    ADS  MathSciNet  Google Scholar 

  47. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes. Crypt. 86(1), 121–136 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Zeng, B., Chen, X., Zhou, D.L., Wen, X.G.: Quantum error-correcting codes. In: Quantum Information Meets Quantum Matter. Quantum Science and Technology, pp 63–82. Springer, New York (2019)

    MATH  Google Scholar 

  49. Guo, P.L., Gao, C.Y., Li, T., Li, X.H., Deng, F.G.: Quantum error rejection for faithful quantum communication over noise channels. Sci. China. Phys. Mech. Astron. 62(11), 110301 (2019)

    ADS  Google Scholar 

  50. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53(9), 2891–2901 (2014)

    MATH  Google Scholar 

  51. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum. Inf. Process. 13(3), 649–663 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China(Grant No. 61502048), Natural Science Foundation of Shanxi Province in China (Grant No. 201801D221159), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China(Grant No. 2019L0470) and Youth Research Foundation of Shanxi University of Finance and Economics, China(Grant No. QN-2016009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Wei Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, LW., Zhang, YQ., Tian, XX. et al. Fault Tolerant Multi-Party Authenticated Quantum Conference Against Collective Noise. Int J Theor Phys 59, 786–806 (2020). https://doi.org/10.1007/s10773-019-04365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04365-4

Keywords

Navigation