Log in

New Public-key Quantum Signature Scheme with Quantum One-Way Function

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the asymmetric quantum cryptosystem, a new public-key quantum signature scheme is proposed. In our scheme, the signer’s public key is derived from her public identity information, and the corresponding private key is generated by the trusted private key generator (PKG). Both of the public key and the private key are classical bit strings, so they are easily kept. It is very convenient for the key management of the quantum signature system. The signer signs a message with her private key, and the quantum signature can be publicly verified with the signer’s public key and the quantum one-way function. Both of the private key and public key can be reused. On the other hand, in the signing phase, the signer sends the message to PKG via a classical unencrypted channel, which can be used to authenticate the identity of the signer. The proposed scheme has the properties of completeness, information-theoretic security, non-repudiation and unforgeability. Its information-theoretic security is ensured by quantum indistinguishability mechanics. On the other hand, our scheme is more efficient than the similar schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wiesner, S.: Conjugate coding. SIGACT News. 15, 78–88 (1983)

    Article  MATH  Google Scholar 

  3. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers Systems and, Signal Processing, pp. 175–179, IEEE, New York (1984)

  4. Gottesman, D., Chuang, I.: Quantum digital signatures. ar**v: quant-ph/0105032 (2001)

  5. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A. 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  6. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A. 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A. 82(4), 042325 (2010)

    Article  ADS  Google Scholar 

  8. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51(7), 2135–2142 (2012)

    Article  MATH  Google Scholar 

  10. Su, Q., Li, W.M.: Improved quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 52(9), 3343–3352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54(2), 614–629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Feng, Y., Huang, D.: Arbitrated quantum signature scheme with continuous-variable coherent states. Int. J. Theor. Phys. 55(4), 2290–2302 (2016)

    Article  MATH  Google Scholar 

  13. Ma, H., Li, F., Mao, N., Wang, Y., Guo, Y.: Network-based arbitrated quantum signature with graph state. Int. J. Theor. Phys. 56(8), 2551–2561 (2017)

    Article  MATH  Google Scholar 

  14. Fatahi, N., Naseri, M., Gong, L.H., Qing, H.L.: High-efficient arbitrated quantum signature scheme based on cluster states. Int. J. Theor. Phys. 56(2), 609–616 (2017)

    Article  MATH  Google Scholar 

  15. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A. 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  16. Liu, F., Zhang, K., Cao, T.: Security weaknesses in arbitrated quantum signature protocols. Int. J. Theor. Phys. 53(1), 277–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Q., Chan, W.H., Wu, C.: On the existence of quantum signature for quantum. Int. J. Theor. Phys. 52(12), 4335–4341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, K., Qin, S., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kang, M.S., Hong, C.H., Heo, J.: Comment on “quantum signature scheme with weak arbitrator”. Int. J. Theor. Phys. 53(6), 1862–1866 (2014)

    Article  MATH  Google Scholar 

  20. Zou, X., Qiu, D., Yu, F., Mateus, P.: Security problems in the quantum signature scheme with a weak arbitrator. Int. J. Theor. Phys. 53(2), 603–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Q., Li, C., Wen, Z., Zhao, W., Chan, W.H.: On the security of arbitrated quantum signature schemes. J. Phys. A-Math. Theor. 46(1), 015307 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: The Workshop on the Theory and Application of Cryptographic Techniques, pp. 47–53. Springer, Heidelberg (1984)

  23. Chen, F.L., Liu, W.F., Chen, S.G., Wang, Z.H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(10), 1–14 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Kahn, D.: The codebreakers. Macmillan, New York (1967)

    Google Scholar 

  25. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  27. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A. 67(4), 042317 (2003)

    Article  ADS  Google Scholar 

  28. Zhou, N.Y., Liu, Y., Zeng, G.H., **ong, J., Zhou, F.C.: Novel qubit block encryption algorithm with hybrid keys. Phys. A. 375(2), 693–698 (2007)

    Article  Google Scholar 

  29. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  30. Menezes, A.J., Oorschot, P.V., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  31. Yang, L., Yang, B., Pan, J.: Quantum public-key encryption protocols with information-theoretic security, Proceedings of SPIE—The International Society for Optical Engineering, p.8440, IEEE, New York (2010)

  32. Yang, L., **ang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **angjun **n.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**n, X., Wang, Z., He, Q. et al. New Public-key Quantum Signature Scheme with Quantum One-Way Function. Int J Theor Phys 58, 3282–3294 (2019). https://doi.org/10.1007/s10773-019-04203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04203-7

Keywords

Navigation