Log in

Measurements of Hydrogen Thermal Conductivity at High Pressure and High Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity for normal hydrogen gas was measured in the range of temperatures from 323 K to 773 K at pressures up to 99 MPa using the transient short hot-wire method. The single-wire platinum probes had wire lengths of 10 mm to 15 mm with a nominal diameter of 10 μm. The volume-averaged transient temperature rise of the wire was calculated using a two-dimensional numerical solution to the unsteady heat conduction equation. A non-linear least-squares fitting procedure was employed to obtain the values of the thermal conductivity required for agreement between the measured temperature rise and the calculation. The experimental uncertainty in the thermal-conductivity measurements was estimated to be 2.2 % (k = 2). An existing thermal-conductivity equation of state was modified to include the expanded range of conditions covered in the present study. The new correlation is applicable from 78 K to 773 K with pressures to 100 MPa and is in agreement with the majority of the present thermal-conductivity measurements within ±2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Maxwell, in The Scientific Papers of James Clerk Maxwell, vol. 2 (Dover, New York, 1965), pp. 26–78

  2. Zhou D., Ihas G.G., Sullivan N.S.: J. Low Temp. Phys. 134, 401 (2004)

    Article  ADS  Google Scholar 

  3. Bradshaw T.W., Norris J.O.W.: Rev. Sci. Instrum. 58, 83 (1987)

    Article  ADS  Google Scholar 

  4. Degtyareva O.F., Bondareva L.T.: J. Anal. Chem. 59, 442 (2004)

    Article  Google Scholar 

  5. Edmonds F.N.: Astrophys. J. 125, 535 (1957)

    Article  ADS  Google Scholar 

  6. Leachman J.W., Jacobsen R.T., Penoncello S.G., Huber M.L.: Int. J. Thermophys. 28, 773 (2007)

    Article  ADS  Google Scholar 

  7. Assael M.J., Mixafendi S., Wakeham W.A.: J. Phys. Chem. Ref. Data 15, 1315 (1986)

    Article  ADS  Google Scholar 

  8. R.D. McCarty, J. Hord, H.M. Roder. Selected Properties of Hydrogen (Engineering Design Data). National Bureau of Standards Monograph 168 (U.S. Government Printing Office, Washington, DC, 1981)

  9. R.D. McCarty. Hydrogen Technological Survey—Thermophysical Properties. National Aeronautics and Space Administration (NASA) Monograph SP-3089 (NASA, Washington, DC, 1975)

  10. Mehl J.B., Huber M.L., Harvey A.H.: Int. J. Thermophys. 31, 740 (2010)

    Article  ADS  Google Scholar 

  11. Roder H.M.: Int. J. Thermophys. 5, 323 (1984)

    Article  ADS  Google Scholar 

  12. H.M. Roder, Experimental Thermal Conductivity Values for Hydrogen, Methane and Ethane, National Bureau of Standards Interagency Report NBSIR 84-3006 (National Bureau of Standards, Boulder, CO, 1984)

  13. Roder H.M., Diller D.E.: J. Chem. Phys. 52, 5928 (1970)

    Article  ADS  Google Scholar 

  14. Mustafa M., Ross M., Trengove R.D., Wakeham W.A., Zalaf M.: Physica 141, 233 (1987)

    Article  Google Scholar 

  15. Assael M.J., Wakeham W.A.: J. Chem. Soc., Faraday Trans. 1 77, 697 (1981)

    Article  Google Scholar 

  16. Clifford A.A., Gray P.: J. Chem. Soc., Faraday Trans. 1 77, 2679 (1981)

    Article  Google Scholar 

  17. Hamrin C.E., Thodos G.: Physica 32, 918 (1966)

    Article  ADS  Google Scholar 

  18. Hemminger W.: Int. J. Thermophys. 8, 317 (1987)

    Article  ADS  Google Scholar 

  19. Saxena S.C., Saxena V.K.: J. Phys. A: Gen. Phys. 3, 309 (1970)

    Article  ADS  Google Scholar 

  20. Timrot D.L., Umanskii A.S.: High Temp. 4, 285 (1966)

    Google Scholar 

  21. Fujii M., Zhang X., Imaishi N., Fujiwara S., Sakamoto T.: Int. J. Thermophys. 18, 327 (1997)

    Article  ADS  Google Scholar 

  22. Zhang X., Hendro W., Fujii M., Tomimura T., Imaishi N.: Int. J. Thermophys. 23, 1077 (2002)

    Article  Google Scholar 

  23. Woodfield P.L., Fukai J., Fujii M., Takata Y., Shinzato K.: Int. J. Thermophys. 29, 1299 (2008)

    Article  ADS  Google Scholar 

  24. Woodfield P.L., Fukai J., Fujii M., Takata Y.: Int. J. Thermophys. 30, 796 (2009)

    Article  ADS  Google Scholar 

  25. Woodfield P.L., Moroe S., Fukai J., Fujii M., Shinzato K., Kohno M., Takata Y.: Int. J. Thermophys. 30, 1748 (2009)

    Article  ADS  Google Scholar 

  26. M.J. Assael, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, in Experimental Thermodynamics, Measurement of the Transport Properties of Fluids, vol. III, ed. by W. Wakeham, A. Nagashima, J.V. Sengers (Blackwell Scientific, Oxford, 1991)

  27. Moroe S., Woodfield P.L., Fukai J., Shinzato K., Kohno M., Fujii M., Takata Y.: Exp. Heat Transfer 24, 168 (2011)

    Article  ADS  Google Scholar 

  28. Zhang X., Fujiwara S., Qi Z., Fujii M.: J. Jpn. Soc. Microgravity Appl. 16, 129 (1999)

    Google Scholar 

  29. Ramires M.L.V., Nieto de Castro C.A., Perkins R.A., Nagasaka Y., Nagashima A., Assael M., Wakeham W.A.: J. Phys. Chem. Ref. Data 29, 133 (2000)

    Article  ADS  Google Scholar 

  30. May E.F., Berg R.F., Moldover M.R.: Int. J. Thermophys. 28, 1085 (2007)

    Article  ADS  Google Scholar 

  31. Hurly J.J., Moldover M.R.: J. Res. Natl. Inst. Stand. Technol. 105, 667 (2000)

    Article  Google Scholar 

  32. Hands B.A., Arp V.D.: Cryogenics 22, 697 (1981)

    Article  Google Scholar 

  33. NIST Standard Reference Database 69: NIST Chemistry WebBook (National Institute of Standards and Technology, Gaithersburg, MD, 2008), http://webbook.nist.gov/chemistry/

  34. Bich E., Millat J., Vogel E.: J. Phys. Chem. Ref. Data 19, 1289 (1990)

    Article  ADS  Google Scholar 

  35. Kestin J., Knierim K., Mason E.A., Najafi B., Ro S.T., Waldman M.: J. Phys. Chem. Ref. Data 13, 229 (1984)

    Article  ADS  Google Scholar 

  36. Assael M.J., Dix M., Lucas A., Wakeham W.A.: J. Chem. Soc., Faraday Trans. 1 77, 439 (1981)

    Article  Google Scholar 

  37. Kestin J., Paul R., Clifford A.A, Wakeham W.A.: Physica 100, 349 (1980)

    Article  Google Scholar 

  38. McCarty R.D., Arp V.D.: Adv. Cryog. Eng. 35, 1465 (1990)

    Google Scholar 

  39. Arp V.D., McCarty R.D.: NIST Technical Note 1334. U.S. Government Printing Office, Washington, DC (1989)

    Google Scholar 

  40. Jaeschke M., Schley P.: Int. J. Thermophys. 16, 1381 (1995)

    Article  ADS  Google Scholar 

  41. Roder H.M., Nieto de Castro C.A.: Cryogenics 27, 312 (1987)

    Article  Google Scholar 

  42. ISO/IEC Guide 98-3:2008, Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995) (ISO, Geneva, Switzerland, 2008), http://www.iso.org/sites/JCGM/GUM-JCGM100.htm

  43. Sun L., Venart J.E.S., Prasad R.C.: Int. J. Thermophys. 23, 357 (2002)

    Article  Google Scholar 

  44. Hanley H.J.M., McCarty R.D., Intemann H.: J. Res. Natl. Bur. Stand. 74, 331 (1970)

    Google Scholar 

  45. Leachman J.W., Jacobsen R.T., Penoncello S.G., Lemmon E.W.: J. Phys. Chem. Ref. Data 38, 721 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Woodfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroe, S., Woodfield, P.L., Kimura, K. et al. Measurements of Hydrogen Thermal Conductivity at High Pressure and High Temperature. Int J Thermophys 32, 1887 (2011). https://doi.org/10.1007/s10765-011-1052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-011-1052-5

Keywords

Navigation