Log in

Exosomes From Human Umbilical Cord Stem Cells Suppress Macrophage-to-myofibroblast Transition, Alleviating Renal Fibrosis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Renal fibrosis, a progressive scarring of the kidney, lacks effective treatment. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSC-Exos) hold promise for treating kidney diseases due to their anti-inflammatory properties. This study investigates their potential to lessen renal fibrosis by targeting macrophage-to-myofibroblast transformation (MMT), a key driver of fibrosis. We employed a mouse model of unilateral ureteral obstruction (UUO) and cultured cells exposed to transforming growth factor-β (TGF-β) to mimic MMT. HucMSC-Exos were administered to UUO mice, and their effects on kidney function and fibrosis were assessed. Additionally, RNA sequencing and cellular analysis were performed to elucidate the mechanisms by which HucMSC-Exos inhibit MMT. HucMSC-Exos treatment significantly reduced kidney damage and fibrosis in UUO mice. They downregulated markers of fibrosis (Collagen I, vimentin, alpha-smooth muscle actin) and suppressed MMT (α-SMA + F4/80 + cells). Furthermore, ARNTL, a specific molecule, emerged as a potential target of HucMSC-Exos in hindering MMT and consequently preventing fibrosis. HucMSC-Exos effectively lessen renal fibrosis by suppressing MMT, suggesting a novel therapeutic strategy for managing kidney damage and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets and all the relevant codes are available from the corresponding author.

Abbreviations

HucMSC-Exos:

Human umbilical cord mesenchymal stem cell-derived exosomes

MMT:

Macrophage-to-myofibroblast transformation

UUO:

Unilateral ureteral obstruction

TGF-β:

Transforming growth factor-β

CKD:

Chronic Kidney Disease

ESRD:

End stage renal disease

MSC:

Mesenchymal Stem Cell

HucMSCs:

Human umbilical cord mesenchymal stem cells

TEM:

Transmission Electron Microscope

NTA:

Nanoparticle Tracking Analysis

FBS:

Fetal bovine serum

FACS:

For fluorescence activated cell sorting

FVS:

Fixable Viability Stain

PMSF:

phenylmethylsulfonyl fluoride

PVDF:

polyvinylidene difluoride

ON:

Obstructive Nephropathy

ARNTL:

Aryl Hydrocarbon Receptor Nuclear Translocator Like

References

  1. Jager, K.J., C. Kovesdy, R. Langham, M. Rosenberg, V. Jha, and C. Zoccali. 2019. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney International 96 (5): 1048–1050. https://doi.org/10.1016/j.kint.2019.07.012.

    Article  PubMed  Google Scholar 

  2. GBD 2013 Mortality and Causes of Death Collaborators. 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385 (9963): 117–171. https://doi.org/10.1016/S0140-6736(14)61682-2.

    Article  Google Scholar 

  3. Huang, R., P. Fu, and L. Ma. 2023. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduction and Targeted Therapy 8 (1): 129. https://doi.org/10.1038/s41392-023-01379-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huen, S.C., and L.G. Cantley. 2017. Macrophages in renal injury and repair. Annual Review of Physiology 79: 449–469. https://doi.org/10.1146/annurev-physiol-022516-034219.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Y., and D.C. Harris. 2011. Macrophages in renal disease. Journal of the American Society of Nephrology 22 (1): 21–27. https://doi.org/10.1681/ASN.2010030269.

    Article  PubMed  Google Scholar 

  6. Tang, P.M., D.J. Nikolic-Paterson, and H.Y. Lan. 2019. Macrophages: Versatile players in renal inflammation and fibrosis. Nature Reviews. Nephrology 15 (3): 144–158. https://doi.org/10.1038/s41581-019-0110-2.

    Article  PubMed  Google Scholar 

  7. Wen, Y., H.R. Yan, B. Wang, and B.C. Liu. 2021. Macrophage heterogeneity in kidney injury and fibrosis. Frontiers in Immunology 12: 681748. https://doi.org/10.3389/fimmu.2021.681748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falke, L.L., S. Gholizadeh, R. Goldschmeding, R.J. Kok, and T.Q. Nguyen. 2015. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nature Reviews. Nephrology 11 (4): 233–244. https://doi.org/10.1038/nrneph.2014.246.

    Article  CAS  PubMed  Google Scholar 

  9. Meng, X.M., S. Wang, X.R. Huang, et al. 2016. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death and Disease 7 (12): e2495. https://doi.org/10.1038/cddis.2016.402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, Y.Y., H. Jiang, J. Pan, et al. 2017. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. Journal of the American Society of Nephrology 28 (7): 2053–2067. https://doi.org/10.1681/ASN.2016050573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ouyang, X., X. Han, Z. Chen, J. Fang, X. Huang, and H. Wei. 2018. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Research & Therapy 9 (1): 246. https://doi.org/10.1186/s13287-018-1003-1.

    Article  CAS  Google Scholar 

  12. Yu, Y., M. Chen, Q. Guo, et al. 2023. Human umbilical cord mesenchymal stem cell exosome-derived miR-874–3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage. Cellular and Molecular Biology Letters 28 (1): 12. https://doi.org/10.1186/s11658-023-00425-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, Y., B. Wang, X. Zhu, et al. 2021. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biology and Toxicology 37 (1): 51–64. https://doi.org/10.1007/s10565-020-09530-8.

    Article  CAS  PubMed  Google Scholar 

  14. Costello, H.M., J.G. Johnston, A. Juffre, G.R. Crislip, and M.L. Gumz. 2022. Circadian clocks of the kidney: Function, mechanism, and regulation. Physiological Reviews 102 (4): 1669–1701. https://doi.org/10.1152/physrev.00045.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zha, M., T. Tian, W. Xu, et al. 2020. The circadian clock gene Bmal1 facilitates cisplatin-induced renal injury and hepatization. Cell Death and Disease 11 (6): 446. https://doi.org/10.1038/s41419-020-2655-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J., C. Liu, Q. Liang, et al. 2021. Postnatal deletion of Bmal1 in mice protects against obstructive renal fibrosis via suppressing Gli2 transcription. The FASEB Journal 35 (5): e21530. https://doi.org/10.1096/fj.202002452R.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, B., F. Ding, D. Hu, et al. 2018. Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-κB signaling pathway in vivo and in vitro [published correction appears in Stem Cell Res Ther. 2018 Mar 22;9(1):76]. Stem Cell Research and Therapy 9 (1): 7. https://doi.org/10.1186/s13287-017-0760-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, F., C. Yang, J. Long, et al. 2019. Executive summary for the 2015 annual data report of the china kidney disease network (CK-NET) [published correction appears in kidney int. 2019 Aug; 96(2):525]. Kidney International 95 (3): 501–505. https://doi.org/10.1016/j.kint.2018.11.011.

    Article  PubMed  Google Scholar 

  19. de Cos, M., M. **pell, A. García-Herrera, et al. 2022. Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmunity Reviews 21 (3): 103014. https://doi.org/10.1016/j.autrev.2021.103014.

    Article  CAS  PubMed  Google Scholar 

  20. Collins, A.J., R.N. Foley, D.T. Gilbertson, and S.C. Chen. 2009. The state of chronic kidney disease, ESRD, and morbidity and mortality in the first year of dialysis. Clinical Journal of the American Society of Nephrology 4 (Suppl 1): S5–S11. https://doi.org/10.2215/CJN.05980809.

    Article  PubMed  Google Scholar 

  21. Moes, A.D., D.A. Hesselink, A.H. van den Meiracker, R. Zietse, and E.J. Hoorn. 2017. Chlorthalidone Versus Amlodipine for Hypertension in Kidney Transplant Recipients Treated With Tacrolimus: A Randomized Crossover Trial. American Journal of Kidney Diseases 69 (6): 796–804. https://doi.org/10.1053/j.ajkd.2016.12.017.

    Article  CAS  PubMed  Google Scholar 

  22. Qiu, Z., Z. Zhong, Y. Zhang, H. Tan, B. Deng, and G. Meng. 2022. Human umbilical cord mesenchymal stem cell-derived exosomal miR-335–5p attenuates the inflammation and tubular epithelial-myofibroblast transdifferentiation of renal tubular epithelial cells by reducing ADAM19 protein levels. Stem Cell Research & Therapy 13 (1): 373. https://doi.org/10.1186/s13287-022-03071-z.

    Article  CAS  Google Scholar 

  23. Xu, S., Y.C. Cheuk, Y. Jia, et al. 2022. Bone marrow mesenchymal stem cell-derived exosomal miR-21a-5p alleviates renal fibrosis by attenuating glycolysis by targeting PFKM. Cell Death and Disease 13 (10): 876. https://doi.org/10.1038/s41419-022-05305-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei, J., Z. Xu, and X. Yan. 2022. The role of the macrophage-to-myofibroblast transition in renal fibrosis. Frontiers in Immunology 13: 934377. https://doi.org/10.3389/fimmu.2022.934377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren, K. 2019. Exosomes in perspective: A potential surrogate for stem cell therapy. Odontology 107 (3): 271–284. https://doi.org/10.1007/s10266-018-0395-9.

    Article  CAS  PubMed  Google Scholar 

  26. **, C., Y. Cao, and Y. Li. 2023. Bone mesenchymal stem cells origin exosomes are effective against sepsis-induced acute kidney injury in rat model. International Journal of Nanomedicine 18: 7745–7758. https://doi.org/10.2147/IJN.S417627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eirin, A., and L.O. Lerman. 2021. Mesenchymal stem/stromal cell-derived extracellular vesicles for chronic kidney disease: are we there yet? Hypertension 78 (2): 261–269. https://doi.org/10.1161/HYPERTENSIONAHA.121.14596.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, Y.G., X.M. Feng, J. Abbott, et al. 2014. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 32 (1): 116–125. https://doi.org/10.1002/stem.1504.

    Article  CAS  PubMed  Google Scholar 

  29. Sun, G., G. Li, D. Li, et al. 2018. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Materials Science & Engineering, C: Materials for Biological Applications 89: 194–204. https://doi.org/10.1016/j.msec.2018.04.006.

    Article  CAS  Google Scholar 

  30. Gibb, A.A., et al. 2020. Myofibroblasts and fibrosis: mitochondrial and metabolic control of cellular differentiation. Circulation Research 127 (3): 427–447. https://doi.org/10.1161/CIRCRESAHA.120.316958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Falke, L.L., et al. 2015. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nature reviews. Nephrology 11 (4): 233–44. https://doi.org/10.1038/nrneph.2014.246.

    Article  CAS  PubMed  Google Scholar 

  32. Schreibing, Felix, and Rafael Kramann. 2022. Map** the human kidney using single-cell genomics. Nature reviews. Nephrology 18 (6): 347–360. https://doi.org/10.1038/s41581-022-00553-4.

    Article  PubMed  Google Scholar 

  33. Shen, S., M. Zhang, X. Wang, et al. 2024. Single-cell RNA sequencing reveals S100a9hi macrophages promote the transition from acute inflammation to fibrotic remodeling after myocardial ischemia-reperfusion. Theranostics 14 (3): 1241–1259. https://doi.org/10.7150/thno.91180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. **a, S., Y. Huang, Y. Zhang, et al. 2023. Role of macrophage-to-myofibroblast transition in chronic liver injury and liver fibrosis. European Journal of Medical Research 28 (1): 502. https://doi.org/10.1186/s40001-023-01488-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keller, M., J. Mazuch, U. Abraham, et al. 2009. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A. 106 (50): 21407–21412. https://doi.org/10.1073/pnas.0906361106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nguyen, K.D., S.J. Fentress, Y. Qiu, K. Yun, J.S. Cox, and A. Chawla. 2013. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341 (6153): 1483–1488. https://doi.org/10.1126/science.1240636.

    Article  CAS  PubMed  Google Scholar 

  37. Silver, A.C., A. Arjona, M.E. Hughes, M.N. Nitabach, and E. Fikrig. 2012. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain, Behavior, and Immunity 26 (3): 407–413. https://doi.org/10.1016/j.bbi.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

  38. Shen, Y., L.R. Xu, D. Yan, et al. 2022. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochimica et Biophysica Acta, Molecular Basis of Disease 1868 (9): 166450. https://doi.org/10.1016/j.bbadis.2022.166450.

    Article  CAS  PubMed  Google Scholar 

  39. Hang, P.Z., J. Liu, J.P. Wang, et al. 2023. 7,8-Dihydroxyflavone alleviates cardiac fibrosis by restoring circadian signals via downregulating Bmal1/Akt pathway. European Journal of Pharmacology 938: 175420. https://doi.org/10.1016/j.ejphar.2022.175420.

    Article  CAS  PubMed  Google Scholar 

  40. Liang, Q., H. Xu, M. Liu, et al. 2022. Postnatal deletion of Bmal1 in cardiomyocyte promotes pressure overload induced cardiac remodeling in mice. Journal of the American Heart Association 11 (13): e025021. https://doi.org/10.1161/JAHA.121.025021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, C., S. Li, S. Ji, et al. 2023. Proximal tubular Bmal1 protects against chronic kidney injury and renal fibrosis by maintaining of cellular metabolic homeostasis. Biochimica et Biophysica Acta, Molecular Basis of Disease 1869 (1): 166572. https://doi.org/10.1016/j.bbadis.2022.166572.

    Article  CAS  PubMed  Google Scholar 

  42. Rey-Serra, C., J. Tituaña, T. Lin, et al. 2023. Reciprocal regulation between the molecular clock and kidney injury. Life Science Alliance 6 (10): e202201886. https://doi.org/10.26508/lsa.202201886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Chongqing Key Laboratory of Children Urogenital Department and Tissue Engineering and Department of Urology, Children’s Hospital of Chongqing Medical University.

Funding

This work was supported by Chongqing Science and Health Joint TCM Technology Innovation and Application Development Project (2020ZY023877), Program for Youth Innovation in Future Medicine, Chongqing Medical University (W0056), Basic Research and Frontier Exploration Project of Yuzhong District of Chongqing (20200126), the General Basic Research Project from the Ministry of Education Key Laboratory of Child Development and Disorders (GBRP-202109).

Author information

Authors and Affiliations

Authors

Contributions

DZ contributed to the conception and design; QG contributed to the investigation and writing of the original draft; PL, MC,YY and CR contributed to the collection and processing of the data; YW, ZZ, LS and XL provided technological guidance and revised the manuscript critically for important intellectual content; DH, YZ and GW conducted the statistical analysis; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Deying Zhang.

Ethics declarations

Ethics Approval

All experimental procedures involving animals were conducted in accordance with the Basel Declaration and were approved by the ethics committee of Chongqing Medical University (approval no. CHCMU-IACUC20220429003, approval date 31 March 2022).

Consent to Participate

Not applicable

Consent for Publication

All authors approved the final manuscript and the submission to this journal.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 KB)

Supplementary file2 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Li, P., Chen, M. et al. Exosomes From Human Umbilical Cord Stem Cells Suppress Macrophage-to-myofibroblast Transition, Alleviating Renal Fibrosis. Inflammation (2024). https://doi.org/10.1007/s10753-024-02027-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02027-0

KEY WORDS

Navigation