Log in

Interplay of IL-33 and IL-35 Modulates Th2/Th17 Responses in Cigarette Smoke Exposure HDM-Induced Asthma

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cigarette smoke (CS) facilitates adverse effects on the airway inflammation and treatment of asthma. Here, we investigated the mechanisms by which CS exacerbates asthma. The roles of IL-33 and IL-35 in asthma development were examined by treatment with IL-33 knockout (IL-33 KO) or transfection of adenovirus encoding IL-35 (Ad-IL-35) in a murine model of cigarette smoke-exposure asthma. Furthermore, the involvement of IL-33 and IL-35 in regulating DCs and Th2/Th17 cells was examined in a coculture system of DCs with CD4+ T cells. Additionally, we observed the effect of CpG-ODNs on the balance of IL-33 and IL-35. We show that CS and house dust mite (HDM) exposure induced IL-33 and suppressed IL-35 levels in cigarette smoke-exposure asthma in vivo and in vitro. Treatment with IL-33 KO or Ad-IL-35 significantly attenuated airway hyperreactivity, goblet hyperplasia, airway remodelling, and eosinophil and neutrophil infiltration in the lung tissues from asthmatic mice. Furthermore, we demonstrated reciprocal regulation between CS and HDM-modulated IL-33 and IL-35. Mechanistically, IL-33 KO (or anti-ST2) and Ad-IL-35 attenuated Th2- and Th17-associated inflammation by downregulating TSLP-DC signalling. Finally, administration of CpG-ODNs suppressed the expression of IL-33/ST2 and elevated the levels of IL-35, which is mainly derived from CD4+Foxp+ Tregs, to alleviate Th2- and Th17-associated inflammation by inhibiting the activation of BMDCs. Taken together, the IL-33/ST2 pathway drives the DC-Th2 and Th17 responses of cigarette smoke-exposure asthma, while IL-35 has the opposite effect. CpG-ODNs represent a potential therapeutic strategy for modulating the balance of IL-33 and IL-35 to suppress allergic airway inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data used to support the findings of this study are included within the article and the supplementary information file.

References

  1. Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet 391: 783–800.

    Article  PubMed  Google Scholar 

  2. El-Husseini, Z.W., R. Gosens, F. Dekker, and G.H. Koppelman. 2020. The genetics of asthma and the promise of genomics-guided drug target discovery. The Lancet Respiratory Medicine 8: 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J., C. Janson, R. Jogi, B. Forsberg, T. Gislason, M. Holm, et al. 2021. A prospective study on the role of smoking, environmental tobacco smoke, indoor painting and living in old or new buildings on asthma, rhinitis and respiratory symptoms. Environmental Research 192: 110269.

    Article  CAS  PubMed  Google Scholar 

  4. Coogan, P.F., N. Castro-Webb, J. Yu, G.T. O’Connor, J.R. Palmer, and L. Rosenberg. 2015. Active and passive smoking and the incidence of asthma in the Black Women’s Health Study. American Journal of Respiratory and Critical Care Medicine 191: 168–176.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lajunen, T.K., J.J. Jaakkola, and M.S. Jaakkola. 2013. The synergistic effect of heredity and exposure to second-hand smoke on adult-onset asthma. American Journal of Respiratory and Critical Care Medicine 188: 776–782.

    Article  PubMed  Google Scholar 

  6. Polosa, R., and N.C. Thomson. 2013. Smoking and asthma: Dangerous liaisons. European Respiratory Journal 41: 716–726.

    Article  CAS  PubMed  Google Scholar 

  7. Kiljander, T., T. Poussa, T. Helin, A. Jaakkola, K. Venho, and L. Lehtimäki. 2020. Symptom control among asthmatics with a clinically significant smoking history: A cross-sectional study in Finland. BMC Pulmonary Medicine 20: 88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Polosa, R., C. Russo, P. Caponnetto, G. Bertino, M. Sarvà, T. Antic, et al. 2011. Greater severity of new onset asthma in allergic subjects who smoke: A 10-year longitudinal study. Respiratory Research 12: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dinarello, C.A. 2018. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Reviews 281: 8–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Savenije, O.E., John J. Mahachie, M., Granell R., Kerkhof M., Dijk F. N., de Jongste J. C., et al. 2014. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. The Journal of Allergy and Clinical Immunology 134: 170–177.

    Article  CAS  PubMed  Google Scholar 

  11. Cayrol, C., and J.P. Girard. 2018. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunological Reviews 281: 154–168.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J.H., K.L. Hailey, S.A. Vitorino, P.A. Jennings, T.D. Bigby, and E.C. Breen. 2019. Cigarette smoke triggers IL-33-associated inflammation in a model of late-stage chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology 61: 567–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, D. 2017. Role of anti-inflammatory cytokines IL-35 and IL-37 in asthma. Inflammation 40: 697–707.

    Article  CAS  PubMed  Google Scholar 

  14. Collison, L.W., C.J. Workman, T.T. Kuo, K. Boyd, Y. Wang, K.M. Vignali, et al. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566–569.

    Article  CAS  PubMed  Google Scholar 

  15. Collison, L.W., V. Chaturvedi, A.L. Henderson, P.R. Giacomin, C. Guy, J. Bankoti, et al. 2010. IL-35-mediated induction of a potent regulatory T cell population. Nature Immunology 11: 1093–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teymouri, M., M. Pirro, F. Fallarino, M. Gargaro, and A. Sahebkar. 2018. IL-35, a hallmark of immune-regulation in cancer progression, chronic infections and inflammatory diseases. International Journal of Cancer 143: 2105–2115.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, R.X., C.R. Yu, I.M. Dambuza, R.M. Mahdi, M.B. Dolinska, Y.V. Sergeev, et al. 2014. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nature Medicine 20: 633–641.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, S., Y. Li, L. **a, H. Shen, and J. Lu. 2019. IL-35 prevent bone loss through promotion of bone formation and angiogenesis in rheumatoid arthritis. Clinical and Experimental Rheumatology 37: 820–825.

    PubMed  Google Scholar 

  19. Peng, W., L. Wang, H. Zhang, Z. Zhang, and X. Chen. 2021. Effects of recombinant IL-35-BCG on Treg/Th17 cell imbalance and inflammatory response in asthmatic newborn mice induced by RSV. Inflammation 44: 2476–2485.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, C., Y. Deng, H. Chen, X. Wu, S. Cheng, Y. Xu, et al. 2014. Decreased concentration of IL-35 in plasma of patients with asthma and COPD. Asian Pacific Journal of Allergy and Immunology 32: 211–217.

    CAS  PubMed  Google Scholar 

  21. Jiang, S., F. Shan, Y. Zhang, L. Jiang, and Z. Cheng. 2018. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. International Journal of Chronic Obstructive Pulmonary Disease 13: 2483–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanagata, N. 2017. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. International Journal of Nanomedicine 12: 515–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sabatel, C., C. Radermecker, L. Fievez, G. Paulissen, S. Chakarov, C. Fernandes, et al. 2017. Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages. Immunity 46: 457–473.

    Article  CAS  PubMed  Google Scholar 

  24. Okajima, T., S. Shigemori, F. Namai, T. Ogita, T. Sato, and T. Shimosato. 2021. Free feeding of CpG-oligodeoxynucleotide particles prophylactically attenuates allergic airway inflammation and hyperresponsiveness in mice. Frontiers in Immunology 12: 738041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohammadi-Shahrokhi, V., A. Rezaei, A. Andalib, A. Rahnama, A. Jafarzadeh, and N. Eskandari. 2017. Immunomodulatory effects of adjuvants CPG, MPLA, and BCG on the Derp2-induced acute asthma at early life in an animal model of BALB/c mice. Inflammation 40: 259–274.

    Article  CAS  PubMed  Google Scholar 

  26. Beeh, K.M., F. Kanniess, F. Wagner, C. Schilder, I. Naudts, A. Hammann-Haenni, et al. 2013. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. The Journal of Allergy and Clinical Immunology 131: 866–874.

    Article  CAS  PubMed  Google Scholar 

  27. Krieg, A.M. 2006. Therapeutic potential of Toll-like receptor 9 activation. Nature Reviews Drug Discovery 5: 471–484.

    Article  CAS  PubMed  Google Scholar 

  28. Li, H.T., Z.G. Chen, Y.S. Lin, H. Liu, J. Ye, X.L. Zou, et al. 2018. CpG-ODNs and budesonide act synergistically to improve allergic responses in combined allergic rhinitis and asthma syndrome induced by chronic exposure to ovalbumin by modulating the TSLP-DC-OX40L axis. Inflammation 41: 1304–1320.

    Article  CAS  PubMed  Google Scholar 

  29. Li, H.T., Y.S. Lin, Q.M. Ye, X.N. Yang, X.L. Zou, H.L. Yang, et al. 2020. Airway inflammation and remodeling of cigarette smoking exposure ovalbumin-induced asthma is alleviated by CpG oligodeoxynucleotides via affecting dendritic cell-mediated Th17 polarization. International Immunopharmacology 82: 106361.

    Article  CAS  PubMed  Google Scholar 

  30. Ramaprakash, H., T. Shibata, K.E. Duffy, U.B. Ismailoglu, R.M. Bredernitz, A.P. Moreira, et al. 2011. Targeting ST2L potentiates CpG-mediated therapeutic effects in a chronic fungal asthma model. American Journal of Pathology 179: 104–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thio, C.L., A.C. Lai, P.Y. Chi, G. Webster, and Y.J. Chang. 2019. Toll-like receptor 9-dependent interferon production prevents group 2 innate lymphoid cell-driven airway hyperreactivity. The Journal of Allergy and Clinical Immunology 144: 682-697.e689.

    Article  CAS  PubMed  Google Scholar 

  32. Tan, Y.Y., H.Q. Zhou, Y.J. Lin, L.T. Yi, Z.G. Chen, Q.D. Cao, et al. 2022. FGF2 is overexpressed in asthma and promotes airway inflammation through the FGFR/MAPK/NF-κB pathway in airway epithelial cells. Military Medical Research 9: 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, H.T., Q.M. Ye, Y.S. Lin, X.N. Yang, X.L. Zou, H.L. Yang, et al. 2021. CpG oligodeoxynucleotides attenuate RORγt-mediated Th17 response by restoring histone deacetylase-2 in cigarette smoke-exposure asthma. Cell & Bioscience 11: 92.

    Article  Google Scholar 

  34. Zhang, H., S.L. Qiu, Q.Y. Tang, X. Zhou, J.Q. Zhang, Z.Y. He, et al. 2019. Erythromycin suppresses neutrophil extracellular traps in smoking-related chronic pulmonary inflammation. Cell Death & Disease 10: 678.

    Article  Google Scholar 

  35. Myou, S., A.R. Leff, S. Myo, E. Boetticher, J. Tong, A.Y. Meliton, et al. 2003. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. Journal of Experimental Medicine 198: 1573–1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Le, A.V., J.Y. Cho, M. Miller, S. McElwain, K. Golgotiu, and D.H. Broide. 2007. Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice. The Journal of Immunology 178: 7310–7316.

    Article  CAS  PubMed  Google Scholar 

  37. Lambrecht, B.N., and H. Hammad. 2017. The immunology of the allergy epidemic and the hygiene hypothesis. Nature Immunology 18: 1076–1083.

    Article  CAS  PubMed  Google Scholar 

  38. Han, Y., C. Yu, Y. Yu, and L. Bi. 2022. CD25+ B cells produced IL-35 and alleviated local inflammation during experimental periodontitis. Oral Diseases 28: 2248–2257.

    Article  PubMed  Google Scholar 

  39. Hammad, H., and B.N. Lambrecht. 2021. The basic immunology of asthma. Cell 184: 1469–1485.

    Article  CAS  PubMed  Google Scholar 

  40. Lanckacker, E.A., K.G. Tournoy, H. Hammad, G. Holtappels, B.N. Lambrecht, G.F. Joos, et al. 2013. Short cigarette smoke exposure facilitates sensitisation and asthma development in mice. European Respiratory Journal 41: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  41. Boonpiyathad, T., Z.C. Sözener, P. Satitsuksanoa, and C.A. Akdis. 2019. Immunologic mechanisms in asthma. Seminars in Immunology 46: 101333.

    Article  CAS  PubMed  Google Scholar 

  42. Dang, X., B. He, Q. Ning, Y. Liu, J. Guo, G. Niu, et al. 2020. Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways. Respiratory Research 21: 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zi, Y., X. Wang, Y. Zi, H. Yu, Y. Lan, Y. Fan, et al. 2023. Cigarette smoke induces the ROS accumulation and iNOS activation through deactivation of Nrf-2/SIRT3 axis to mediate the human bronchial epithelium ferroptosis. Free Radical Biology & Medicine 200: 73–86.

    Article  CAS  Google Scholar 

  44. Moffatt, M.F., I.G. Gut, F. Demenais, D.P. Strachan, E. Bouzigon, S. Heath, et al. 2010. A large-scale, consortium-based genomewide association study of asthma. New England Journal of Medicine 363: 1211–1221.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, W., P. Li, Y.F. Chen, and J. Yang. 2015. A potential immunopathogenic role for reduced IL-35 expression in allergic asthma. Journal of Asthma 52: 763–771.

    Article  CAS  Google Scholar 

  46. Huang, Q., C.D. Li, Y.R. Yang, X.F. Qin, J.J. Wang, X. Zhang, et al. 2021. Role of the IL-33/ST2 axis in cigarette smoke-induced airways remodelling in chronic obstructive pulmonary disease. Thorax thoraxjnl-2020-214712.

  47. Kim, M.H., J.W. Kwon, J.H. Hahn, M. Kim, H.S. Chang, J.S. Park, et al. 2022. Circulating IL-32 and IL-33 levels in patients with asthma and COPD: A retrospective cross-sectional study. Journal of Thoracic Disease 14: 2437–2439.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wechsler, M.E., M.K. Ruddy, I.D. Pavord, E. Israel, K.F. Rabe, L.B. Ford, et al. 2021. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. New England Journal of Medicine 385: 1656–1668.

    Article  CAS  PubMed  Google Scholar 

  49. Whitehead Gregory S., Rhonda H. Wilson, Keiko Nakano, Lauranell H. Burch, Hideki Nakano, Donald N. Cook. 2012. IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. Journal of Allergy and Clinical Immunology 129: 207–215.e201–205.

  50. Li, Y., X. Pan, X. Peng, S. Li, Y. Zhou, X. Zheng, et al. 2015. Adenovirus-mediated interleukin-35 gene transfer suppresses allergic airway inflammation in a murine model of asthma. Inflammation Research 64: 767–774.

    Article  CAS  PubMed  Google Scholar 

  51. Dong, J., C.K. Wong, Z. Cai, D. Jiao, M. Chu, and C.W. Lam. 2015. Amelioration of allergic airway inflammation in mice by regulatory IL-35 through dampening inflammatory dendritic cells. Allergy 70: 921–932.

    Article  CAS  PubMed  Google Scholar 

  52. Pan, X., K. Xu, Y. Li, X. Wang, X. Peng, M. Li, et al. 2019. Interleukin-35 expression protects against cigarette smoke-induced lung inflammation in mice. Biomedicine & Pharmacotherapy 110: 727–732.

    Article  CAS  Google Scholar 

  53. Faustino, L.D., J.W. Griffith, R.A. Rahimi, K. Nepal, D.L. Hamilos, J.L. Cho, et al. 2020. Interleukin-33 activates regulatory T cells to suppress innate γδ T cell responses in the lung. Nature Immunology 21: 1371–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kohlgruber, A.C., S.T. Gal-Oz, N.M. LaMarche, M. Shimazaki, D. Duquette, H.F. Koay, et al. 2018. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nature Immunology 19: 464–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo, X.J., P. Dash, J.C. Crawford, E.K. Allen, A.E. Zamora, D.F. Boyd, et al. 2018. Lung γδ T cells mediate protective responses during neonatal influenza infection that are associated with type 2 immunity. Immunity 49: 531-544.e536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nie, M., Q. Zeng, L. **, Y. Tang, R. Luo, and W. Liu. 2021. The effect of IL-35 on the expression of nasal epithelial-derived proinflammatory cytokines. Mediators of Inflammation 2021: 1110671.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Merad, M., P. Sathe, J. Helft, J. Miller, and A. Mortha. 2013. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology 31: 563–604.

    Article  CAS  PubMed  Google Scholar 

  58. Jaligama, S., V.S. Patel, P. Wang, A. Sallam, J. Harding, M. Kelley, et al. 2018. Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor. Particle and Fibre Toxicology 15: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hammad, H., and B.N. Lambrecht. 2015. Barrier epithelial cells and the control of type 2 immunity. Immunity 43: 29–40.

    Article  CAS  PubMed  Google Scholar 

  60. Roan, F., K. Obata-Ninomiya, and S.F. Ziegler. 2019. Epithelial cell-derived cytokines: More than just signaling the alarm. The Journal of Clinical Investigation 129: 1441–1451.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Deckers, J., D. Sichien, M. Plantinga, J. Van Moorleghem, M. Vanheerswynghels, E. Hoste, et al. 2017. Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4-dependent dermal dendritic cells. The Journal of Allergy and Clinical Immunology 140: 1364-1377.e1362.

    Article  CAS  PubMed  Google Scholar 

  62. Agalioti, T., E.J. Villablanca, S. Huber, and N. Gagliani. 2018. T(H)17 cell plasticity: The role of dendritic cells and molecular mechanisms. Journal of Autoimmunity 87: 50–60.

    Article  CAS  PubMed  Google Scholar 

  63. Van Dyken, S.J., J.C. Nussbaum, J. Lee, A.B. Molofsky, H.E. Liang, J.L. Pollack, et al. 2016. A tissue checkpoint regulates type 2 immunity. Nature Immunology 17: 1381–1387.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Willart, M.A., K. Deswarte, P. Pouliot, H. Braun, R. Beyaert, B.N. Lambrecht, et al. 2012. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. Journal of Experimental Medicine 209: 1505–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vocca, L., C. Di Sano, C.G. Uasuf, A. Sala, L. Riccobono, S. Gangemi, et al. 2015. IL-33/ST2 axis controls Th2/IL-31 and Th17 immune response in allergic airway diseases. Immunobiology 220: 954–963.

    Article  CAS  PubMed  Google Scholar 

  66. Huang, C.H., E.X. Loo, I.C. Kuo, G.H. Soh, D.L. Goh, B.W. Lee, et al. 2011. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35. The Journal of Immunology 187: 462–471.

    Article  CAS  PubMed  Google Scholar 

  67. Vignali, D.A., and V.K. Kuchroo. 2012. IL-12 family cytokines: Immunological playmakers. Nature Immunology 13: 722–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krieg, A.M., A.K. Yi, S. Matson, T.J. Waldschmidt, G.A. Bishop, R. Teasdale, et al. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549.

    Article  CAS  PubMed  Google Scholar 

  69. Kline, J.N., and Z.K. Ballas. 2002. DNA immunomodulation of asthma. Clinical Allergy and Immunology 16: 551–564.

    CAS  PubMed  Google Scholar 

  70. Wirtz, S., C. Becker, M.C. Fantini, E.E. Nieuwenhuis, I. Tubbe, P.R. Galle, et al. 2005. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. The Journal of Immunology 174: 2814–2824.

    Article  CAS  PubMed  Google Scholar 

  71. Kim, D.H., J.H. Sohn, H.J. Park, J.H. Lee, J.W. Park, and J.M. Choi. 2016. CpG oligodeoxynucleotide inhibits cockroach-induced asthma via induction of IFN-γ+ Th1 cells or Foxp3+ regulatory T cells in the lung. Allergy, Asthma & Immunology Research 8: 264–275.

    Article  CAS  Google Scholar 

  72. Senti, G., P. Johansen, Susanne Haug, C. Bull, C. Gottschaller, P. Müller et al. 2009. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: A phase I/IIa clinical trial. Clinical and Experimental Allergy 39: 562–570.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to J Liu (Guangzhou Laide Liankang Biotechnology Co., Ltd.) for her assistance in establishing the mouse model. We sincerely thank Prof. Kefang Lai and Dr. Chuqin Huang (State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China) for invasive lung function assessment in mice. The current manuscript was revised by a native English speaking editor at American Journal Experts (AJE).

Funding

This study was funded by grants from National Natural Science Foundation of China (No. 81973984 and 81970017), and Basic and Applied Basic Research Foundation of Guangdong Province (No.2019A1515010918).

Author information

Authors and Affiliations

Authors

Contributions

J Liu, BT Su, and PZ Tao drafted the article. J Liu, BT Su, PZ Tao, XN Yang, L Zheng, YS Lin, XL Zou, HL Yang, and WB Wu performed the experiments and contributed to acquisition of data. J Liu, BT Su, PZ Tao, XN Yang, L Zheng, TT Zhang, and HT Li analysed the data. HT Li and TT Zhang designed the study and revised the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tiantuo Zhang or Hongtao Li.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University.

Consent for Publication

The authors have consented to submission of the manuscript to Inflammation journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**g Liu, Beiting Su, and Peizhi Tao have equal contribution to the article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Su, B., Tao, P. et al. Interplay of IL-33 and IL-35 Modulates Th2/Th17 Responses in Cigarette Smoke Exposure HDM-Induced Asthma. Inflammation 47, 173–190 (2024). https://doi.org/10.1007/s10753-023-01902-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01902-6

KEY WORDS

Navigation