Log in

Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is Associated with Disease Activity and Risk of Incident Cardiovascular Disease in Patients with Systemic Lupus Erythematosus

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

To study the relationship of serum PCSK9 and disease activity and major adverse cardiovascular events (MACEs) in systemic lupus erythematosus (SLE). Consecutive patients who fulfilled ≥ 4 ACR criteria for SLE and consented for a biomarker study in 2009–2013 were included. Stored serum samples were assayed for PCSK9. PCSK9 levels were correlated with SLE disease activity scores. Patients were divided into two groups according to the median PCSK9 level and new MACEs over time were evaluated. The effect of PCSK9 level on MACEs and mortality was studied by Cox regression, adjusted for confounders. A total of 539 SLE patients were studied (93% women, age 41.9 ± 14.0 years). The median PCSK9 level at baseline was 220 ng/ml. Patients with higher PCSK9 (≥ 220 ng/ml; n = 269) had significantly higher SLE disease activity index (SLEDAI) than those with lower PCSK9 (< 220 ng/ml; n = 270). PCSK9 levels were significantly higher in patients with active renal than active non-renal SLE, which in turn were significantly higher than those with inactive SLE or healthy controls. PCSK9 level correlated with SLEDAI in the overall population (ρ = 0.30; p < 0.001). Over 91.3 ± 18.6 months, 29 patients developed 31 MACEs and 40 patients succumbed (25% for vascular events). The cumulative incidence of MACEs at 5 years was 4.8% in the higher PCSK9 and 1.1% in the lower PCSK9 group (HR2.51[1.11–5.70]; p = 0.03). Cox regression revealed higher PCSK9 was significantly associated with MACEs (HR1.003[1.000–1.005] per ng/ml; p = 0.02) independent of age, sex, renal function, baseline disease activity score, traditional atherosclerotic risk factors, antiphospholipid antibody and the use of aspirin/warfarin, statins and immunosuppressive drugs. PCSK9 level was also independently associated with all-cause (HR1.002[1.000–1.004] per ng/ml; p = 0.03) and vascular mortality (HR1.004[1.000–1.007]; p = 0.04). We concluded that serum PCSK9 level correlates with SLE disease activity. Higher serum PCSK9 levels are associated with increased risk of cardiovascular events and mortality in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The raw data of this study are not open to be accessed.

References

  1. Brown, M.S., R.G. Anderson, and J.L. Goldstein. 1983. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32: 663–667.

    Article  CAS  PubMed  Google Scholar 

  2. Handelsman, Y., and N.E. Lepor. 2018. PCSK9 Inhibitors in Lipid Management of Patients With Diabetes Mellitus and High Cardiovascular Risk: A Review. Journal of the American Heart Association 7: e008953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abifadel, M., S. Elbitar, P. El Khoury, Y. Ghaleb, M. Chémaly, M.L. Moussalli, et al. 2014. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Current Atherosclerosis Reports 16: 439.

    Article  PubMed  Google Scholar 

  4. Kotowski, I.K., A. Pertsemlidis, A. Luke, R.S. Cooper, G.L. Vega, J.C. Cohen, et al. 2006. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. American Journal of Human Genetics 78: 410–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langsted, A., B.G. Nordestgaard, M. Benn, A. Tybjærg-Hansen, and P.R. Kamstrup. 2016. PCSK9 R46L Loss-of-Function Mutation Reduces Lipoprotein(a), LDL Cholesterol, and Risk of Aortic Valve Stenosis. Journal of Clinical Endocrinology and Metabolism 101: 3281–3287.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, Z., Y. Tuakli-Wosornu, T.A. Lagace, L. Kinch, N.V. Grishin, J.D. Horton, et al. 2006. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. American Journal of Human Genetics 79: 514–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruscica, M., N. Ferri, F. Fogacci, M. Rosticci, M. Botta, S. Marchiano, et al. 2017. Circulating Levels of Proprotein Convertase Subtilisin/Kexin Type 9 and Arterial Stiffness in a Large Population Sample: Data From the Brisighella Heart Study. Journal of the American Heart Association 6: e005764.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou, Y., W. Chen, M. Lu, and Y. Wang. 2021. Association Between Circulating Proprotein Convertase Subtilisin/Kexin Type 9 and Major Adverse Cardiovascular Events, Stroke, and All-Cause Mortality: Systemic Review and Meta-Analysis. Front Cardiovasc Med 8: 617249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tóth, Š, J. Fedačko, T. Pekárová, Z. Hertelyová, M. Katz, A. Mughees, et al. 2017. Elevated Circulating PCSK9 Concentrations Predict Subclinical Atherosclerotic Changes in Low Risk Obese and Non-Obese Patients. Cardiol Ther 6: 281–289.

    Article  PubMed  PubMed Central  Google Scholar 

  10. **e, W., J. Liu, W. Wang, M. Wang, Y. Qi, F. Zhao, et al. 2016. Association between plasma PCSK9 levels and 10-year progression of carotid atherosclerosis beyond LDL-C: A cohort study. International Journal of Cardiology 215: 293–298.

    Article  PubMed  Google Scholar 

  11. Nose, D., Y. Shiga, Y. Ueda, Y. Idemoto, K. Tashiro, Y. Suematsu, et al. 2019. Association between plasma levels of PCSK9 and the presence of coronary artery disease in Japanese. Heart and Vessels 34: 19–28.

    Article  PubMed  Google Scholar 

  12. Gao, J., Y.N. Yang, Z. Cui, S.Y. Feng, J. Ma, C.P. Li, et al. 2021. Pcsk9 is associated with severity of coronary artery lesions in male patients with premature myocardial infarction. Lipids in Health and Disease 20: 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, S., Y. Zhang, R.X. Xu, Y.L. Guo, C.G. Zhu, N.Q. Wu, et al. 2015. Proprotein convertase subtilisin-kexin type 9 as a biomarker for the severity of coronary artery disease. Annals of Medicine 47: 386–393.

    Article  CAS  PubMed  Google Scholar 

  14. Peng, J., M.M. Liu, J.L. **, Y.X. Cao, Y.L. Guo, N.Q. Wu, et al. 2020. Association of circulating PCSK9 concentration with cardiovascular metabolic markers and outcomes in stable coronary artery disease patients with or without diabetes: a prospective, observational cohort study. Cardiovascular Diabetology 19: 167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liberale, L., F. Carbone, M. Bertolotto, A. Bonaventura, A. Vecchié, F. Mach, et al. 2018. Serum PCSK9 levels predict the occurrence of acute coronary syndromes in patients with severe carotid artery stenosis. International Journal of Cardiology 263: 138–141.

    Article  PubMed  Google Scholar 

  16. Chao, T.H., I.C. Chen, Y.H. Li, P.T. Lee, and S.Y. Tseng. 2016. Plasma Levels of Proprotein Convertase Subtilisin/Kexin Type 9 Are Elevated in Patients With Peripheral Artery Disease and Associated With Metabolic Disorders and Dysfunction in Circulating Progenitor Cells. Journal of the American Heart Association 5: e003497.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kheirkhah, A., C. Lamina, B. Rantner, B. Kollerits, M. Stadler, J. Pohlhammer, et al. 2021. Elevated levels of serum PCSK9 in male patients with symptomatic peripheral artery disease: The CAVASIC study. Atherosclerosis 316: 41–47.

    Article  CAS  PubMed  Google Scholar 

  18. Ministrini, S., and F. Carbone. 2022. PCSK9 and Inflammation: Their Role in Autoimmune Diseases, with a Focus on Rheumatoid Arthritis and Systemic Lupus Erythematosus. Current Medicinal Chemistry 29: 970–979.

    Article  CAS  PubMed  Google Scholar 

  19. Boyd, J.H., C.D. Fjell, J.A. Russell, D. Sirounis, M.S. Cirstea, and K.R. Walley. 2016. Increased Plasma PCSK9 Levels Are Associated with Reduced Endotoxin Clearance and the Development of Acute Organ Failures during Sepsis. Journal of Innate Immunity 8: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bianconi, V., E. Schiaroli, M. Pirro, S. Cardaci, C. Busti, M.R. Mannarino, et al. 2020. Effects of antiretroviral therapy on proprotein convertase subtilisin/kexin 9: focus on lipids, inflammation and immunovirological parameters. HIV Medicine 21: 512–522.

    Article  CAS  PubMed  Google Scholar 

  21. Mok, C.C. 2017. Biological and targeted therapies of systemic lupus erythematosus: evidence and the state of the art. Expert Review of Clinical Immunology 13: 677–692.

    Article  CAS  PubMed  Google Scholar 

  22. Mok, C.C. 2006. Accelerated atherosclerosis, arterial thromboembolism, and preventive strategies in systemic lupus erythematosus. Scandinavian Journal of Rheumatology 35: 85–95.

    Article  CAS  PubMed  Google Scholar 

  23. Bruce, I.N., M.B. Urowitz, D.D. Gladman, D. Ibañez, and G. Steiner. 2003. Risk factors for coronary heart disease in women with systemic lupus erythematosus: the Toronto Risk Factor Study. Arthritis and Rheumatism 48: 3159–3167.

    Article  PubMed  Google Scholar 

  24. Urowitz, M.B., A.A. Bookman, B.E. Koehler, D.A. Gordon, H.A. Smythe, and M.A. Ogryzlo. 1976. The bimodal mortality pattern of systemic lupus erythematosus. American Journal of Medicine 60: 221–225.

    Article  CAS  PubMed  Google Scholar 

  25. Fang, C., T. Luo, and L. Lin. 2018. Elevation of serum proprotein convertase subtilisin/kexin type 9 (PCSK9) concentrations and its possible atherogenic role in patients with systemic lupus erythematosus. Ann Transl Med 6: 452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sánchez-Pérez, H., J.C. Quevedo-Abeledo, B. Tejera-Segura, L. de Armas-Rillo, I. Rúa-Figueroa, M.A. González-Gay, et al. 2020. Proprotein convertase subtilisin/kexin type 9 is related to disease activity and damage in patients with systemic erythematosus lupus. Therapeutic Advances in Musculoskeletal Disease 12: 1759720X20975904.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu, A., M. Rahman, I. Hafström, S. Ajeganova, and J. Frostegård. 2020. Proprotein convertase subtilisin kexin 9 is associated with disease activity and is implicated in immune activation in systemic lupus erythematosus. Lupus 29: 825–835.

    Article  CAS  PubMed  Google Scholar 

  28. Hochberg, M.C. 1997. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis and Rheumatism 40: 1725.

    Article  CAS  PubMed  Google Scholar 

  29. Dobiášová, M. 2004. Atherogenic Index of Plasma [Log(Triglycerides/HDL-Cholesterol)]: Theoretical and Practical Implications. Clinical Chemistry 50: 1113–1115.

    Article  PubMed  Google Scholar 

  30. Dobiásová, M., and J. Frohlich. 2001. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)). Clinical Biochemistry 34: 583–588.

    Article  PubMed  Google Scholar 

  31. Bo, M.S., W.L. Cheah, S. Lwin, T. Moe Nwe, T.T. Win, and M. Aung. 2018. Understanding the Relationship between Atherogenic Index of Plasma and Cardiovascular Disease Risk Factors among Staff of an University in Malaysia. Journal of Nutrition and Metabolism 2018: e7027624.

    Article  Google Scholar 

  32. Dobiásová, M. 2006. AIP–atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitrni Lekarstvi 52: 64–71.

    PubMed  Google Scholar 

  33. Wu, T.T., Y. Gao, Y.Y. Zheng, Y.T. Ma, and X. **e. 2018. Atherogenic index of plasma (AIP): a novel predictive indicator for the coronary artery disease in postmenopausal women. Lipids in Health and Disease 17: 197.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Levey, A.S., J.P. Bosch, J.B. Lewis, T. Greene, N. Rogers, and D. Roth. 1999. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Annals of Internal Medicine 130: 461–470.

    Article  CAS  PubMed  Google Scholar 

  35. Petri, M., M.Y. Kim, K.C. Kalunian, J. Grossman, B.H. Hahn, L.R. Sammaritano, et al. 2005. Combined oral contraceptives in women with systemic lupus erythematosus. The New England journal of medicine 353: 2550–2558.

    Article  CAS  PubMed  Google Scholar 

  36. Gladman, D., E. Ginzler, C. Goldsmith, P. Fortin, M. Liang, M. Urowitz, et al. 1996. The development and initial validation of the systemic lupus. Arthritis and Rheumatism 39: 363–369.

    Article  CAS  PubMed  Google Scholar 

  37. Ahluwalia, N., J. Blacher, F.S. de Edelenyi, P. Faure, C. Julia, S. Hercberg, et al. 2013. Prognostic value of multiple emerging biomarkers in cardiovascular risk prediction in patients with stable cardiovascular disease. Atherosclerosis 228: 478–484.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, T.J., P. Gona, M.G. Larson, G.H. Tofler, D. Levy, C. Newton-Cheh, et al. 2006. Multiple biomarkers for the prediction of first major cardiovascular events and death. New England Journal of Medicine 355: 2631–2639.

    Article  CAS  PubMed  Google Scholar 

  39. Zethelius, B., L. Berglund, J. Sundström, E. Ingelsson, S. Basu, A. Larsson, et al. 2008. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. New England Journal of Medicine 358: 2107–2116.

    Article  CAS  PubMed  Google Scholar 

  40. Fanouriakis, A., M. Kostopoulou, K. Cheema, H.J. Anders, M. Aringer, I. Bajema, et al. 2020. 2019 Update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Annals of the Rheumatic Diseases 79: 713–723.

    Article  CAS  PubMed  Google Scholar 

  41. Mok, C.C., L. Hamijoyo, N. Kasitanon, D.Y. Chen, S. Chen, K. Yamaoka, et al. 2021. The Asia-Pacific League of Associations for Rheumatology consensus statements on the management of systemic lupus erythematosus. The Lancet Rheumatology 3: e517–e531.

    Article  CAS  Google Scholar 

  42. Shaharir, S.S., H. Hussein, S. Rajalingham, M.S. Mohamed Said, A.H. Abdul Gafor, R. Mohd, et al. 2016. Damage in the Multiethnic Malaysian Systemic Lupus Erythematosus (SLE) Cohort: Comparison with Other Cohorts Worldwide. PLoS ONE 11: e0166270.

    Article  PubMed  Google Scholar 

  43. Mok, C.C., S.M. Tse, K.L. Chan, and L.Y. Ho. 2018. Effect of immunosuppressive therapies on survival of systemic lupus erythematosus: a propensity score analysis of a longitudinal cohort. Lupus 27: 722–727.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, Z.H., L.J. Zhang, W.X. Liu, Y.S. Lei, G.L. **ng, J.J. Zhang, et al. 2012. Predictors of survival in Chinese patients with lupus nephritis. Lupus 21: 1049–1056.

    Article  CAS  PubMed  Google Scholar 

  45. Frostegård, J., S. Ahmed, I. Hafström, S. Ajeganova, and M. Rahman. 2021. Low levels of PCSK9 are associated with remission in patients with rheumatoid arthritis treated with anti-TNF-α: potential underlying mechanisms. Arthritis Research & Therapy 23: 32.

    Article  Google Scholar 

  46. Ricci, C., M. Ruscica, M. Camera, L. Rossetti, C. Macchi, A. Colciago, et al. 2018. PCSK9 induces a pro-inflammatory response in macrophages. Science and Reports 8: 2267.

    Article  Google Scholar 

  47. de Armas-Rillo, L., J.C. Quevedo-Abeledo, A. de Vera-González, A. González-Delgado, J.A. García-Dopico, A. Jimenez-Sosa, et al. 2021. Proprotein convertase subtilisin/kexin type 9 in the dyslipidaemia of patients with axial spondyloarthritis is related to disease activity. Rheumatology (Oxford) 60: 2296–2306.

    Article  PubMed  Google Scholar 

  48. Qi, Z., L. Hu, J. Zhang, W. Yang, X. Liu, D. Jia, et al. 2021. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation 143: 45–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Miss Kylie Mak for her assistance in performing the PCSK9 assay and Miss Becky Fong for the clerical work during data collection. There were no commercial sources of support for this study.

Funding

This work was supported by a mini grant from the Hong Kong Society of Rheumatology.

Author information

Authors and Affiliations

Authors

Contributions

CC Mok: Conceptualization, design, methodology, data collection and interpretation, writing. LY Ho: Conceptualization, design, data curation and interpretation, reviewing and editing. KL Chan: Conceptualization, data curation and interpretation, reviewing and editing. SM Tse: Conceptualization, data curation and interpretation, reviewing and editing. CH To: Conceptualization, methodology, data interpretation, reviewing and editing.

Corresponding author

Correspondence to Chi Chiu Mok.

Ethics declarations

Ethics Approval

This study was approved by the Research and Ethics Committee of Tuen Mun Hospital.

Consent to Participate

Written consent was obtained from all participants of this study.

Consent for Publication

Not applicable.

Conflict of Interests

All authors (CC Mok, LY Ho, KL Chan, SM Tse and CH To) declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Serum PCSK9 levels correlate with SLE activity.

• Higher serum PCSK9 level at baseline is independently associated with new ischemic vascular events, all-cause and vascular mortality in patients with SLE.

• Serum PCSK9 is a potential biomarker for disease activity and cardiovascular risk in SLE and further validation is necessary.

Supplementary Information

Below is the link to the electronic supplementary material. Supplementary Figure 1: Cumulative incidence of major adverse cardiovascular events according to a history of lupus nephritis

Supplementary file1 (TIF 89 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mok, C.C., Ho, L.Y., Chan, K.L. et al. Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is Associated with Disease Activity and Risk of Incident Cardiovascular Disease in Patients with Systemic Lupus Erythematosus. Inflammation 46, 1458–1470 (2023). https://doi.org/10.1007/s10753-023-01821-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01821-6

KEY WORDS

Navigation