Log in

C-Reactive Protein Induces TNF-α Secretion by p38 MAPK–TLR4 Signal Pathway in Rat Vascular Smooth Muscle Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease. C-reactive protein (CRP) not only is an inflammatory marker but also regulates the expressions of other inflammatory cytokines associated with the pathogenesis of atherosclerosis. Toll-like receptor 4 (TLR4) also contributes to atherogenesis via transducting inflammatory signals. Herein, our studies focused on characterizing the effect of CRP on tumor necrosis factor α (TNF-α) production and TLR4-related molecular mechanisms in rat vascular smooth muscle cells (VSMCs). The results showed that CRP stimulated VSMCs to secrete TNF-α and enhanced TLR4 expression in a time-concentration-dependent manner. TLR4 knockdown significantly inhibited CRP-induced TNF-α generation, and p38 mitogen-activated protein kinase (MAPK) blocker SB203580 depressed TLR4 expression and TNF-α production initiated by CRP in VSMCs. The data demonstrate that CRP triggers an inflammatory response in rat VSMCs by inducing TNF-α secretion, which is mediated by p38 MAPK–TLR4 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine 352: 1685–1695.

    Article  PubMed  CAS  Google Scholar 

  2. Bradley, J.R. 2008. TNF-mediated inflammatory disease. The Journal of Pathology 214: 149–160.

    Article  PubMed  CAS  Google Scholar 

  3. Ng, S.B., Y.H. Tan, and G.R. Guy. 1994. Differential induction of the interleukin-6 gene by tumor necrosis factor and interleukin-1. The Journal of Biological Chemistry 269: 19021–19027.

    PubMed  CAS  Google Scholar 

  4. Jovinge, S., A. Hamsten, P. Tornvall, A. Proudler, P. Båvenholm, C. Ericsson, I. Godsland, U. de Faire, and J. Nilsson. 1998. Evidence for a role of tumor necrosis factor alpha in disturbances of triglyceride and glucose metabolism predisposing to coronary heart disease. Metabolism 47: 113–118.

    Article  PubMed  CAS  Google Scholar 

  5. Blake, G.J., and P.M. Ridker. 2001. Novel clinical markers of vascular wall inflammation. Circulation Research 89: 763–771.

    Article  PubMed  CAS  Google Scholar 

  6. Pasceri, V., J.T. Willerson, and E.T.H. Yeh. 2000. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102: 2165–2168.

    PubMed  CAS  Google Scholar 

  7. Hattori, Y., M. Matsumura, and K. Kasai. 2003. Vascular smooth muscle cell activation by C-reactive protein. Cardiovascular Research 58: 186–195.

    Article  PubMed  CAS  Google Scholar 

  8. Libby, P. 2002. Inflammation in atherosclerosis. Nature 420: 868–874.

    Article  PubMed  CAS  Google Scholar 

  9. Edfeldt, K., J. Swedenborg, G.K. Hansson, and Z. Yan. 2002. Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation 105: 1158–1161.

    PubMed  CAS  Google Scholar 

  10. Michelsen, K.S., T.M. Doherty, P.K. Shah, and M. Arditi. 2004. TLR signaling: An emerging bridge from innate immunity to atherogenesis. Journal of Immunology 173: 5901–5907.

    CAS  Google Scholar 

  11. Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430: 257–263.

    Article  PubMed  CAS  Google Scholar 

  12. Tobias, P., and L.K. Curtiss. 2005. Thematic review series: The immune system and atherogenesis. Paying the price for pathogen protection: Toll receptors in atherogenesis. Journal of Lipid Research 46: 404–411.

    Article  PubMed  CAS  Google Scholar 

  13. Faure, E., O. Equils, P.A. Sieling, L. Thomas, F.X. Zhang, C.J. Kirschning, N. Polentaruttii, M. Muzioi, and M. Arditi. 2000. Bacterial lipopolysaccharide activates NF-κB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells: Differential expression of TLR-4 and TLR-2 in endothelial cells. The Journal of Biological Chemistry 275: 11058–11063.

    Article  PubMed  CAS  Google Scholar 

  14. An, H., Y. Yu, M. Zhang, H. Xu, R. Qi, X. Yan, S. Liu, W. Wang, Z. Guo, J. Guo, Z. Qin, and X. Cao. 2002. Involvement of ERK, p38 and NF-κB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 106: 38–45.

    Article  PubMed  CAS  Google Scholar 

  15. Yang, X., D. Coriolan, V. Murthy, K. Schultz, D.T. Golenbock, and D. Beasley. 2005. Proinflammatory phenotype of vascular smooth muscle cells: Role of efficient Toll-like receptor 4 signaling. American Journal of Physiology. Heart and Circulatory Physiology 89: H1069–H1076.

    Article  Google Scholar 

  16. Frantz, S., G. Ertl, and J. Bauersachs. 2007. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nature Clinical Practice. Cardiovascular Medicine 4: 444–454.

    Article  PubMed  CAS  Google Scholar 

  17. Heo, S.K., H.J. Yun, E.K. Noh, W.H. Park, and S.D. Park. 2008. LPS induces inflammatory responses in human aortic vascular smooth muscle cells via toll-like receptor 4 expression and nitric oxide production. Immunology Letters 120: 57–64.

    Article  PubMed  CAS  Google Scholar 

  18. Ji, Y.Y., J.T. Liu, Z.D. Wang, and N. Liu. 2009. Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cellular Physiology and Biochemistry 23: 265–276.

    Article  PubMed  CAS  Google Scholar 

  19. Ong, K.G., J.M. Leland, K. Zeng, G. Barrett, M. Zourob, and C.A. Grimes. 2006. A rapid highly-sensitive endotoxin detection system. Biosensors & Bioelectronics 21: 2270–2274.

    Article  CAS  Google Scholar 

  20. Pearson, T.A., G.A. Mensah, R.W. Alexander, J.L. Anderson, R.O. Cannon 3rd, M. Criqui, Y.Y. Fadl, S.P. Fortmann, Y. Hong, G.L. Myers, N. Rifai, S.C. Smith Jr., K. Taubert, R.P. Tracy, and F. Vinicor. 2003. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107: 499–511.

    Article  PubMed  Google Scholar 

  21. Liuzzo, G., M. Santamaria, L.M. Biasucci, M. Narducci, V. Colafrancesco, A. Porto, S. Brugaletta, M. Pinnelli, V. Rizzello, A. Maseri, and F. Crea. 2007. Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein: Evidence for a direct proinflammatory effect of azide and lipopolysaccharide-free C-reactive protein on human monocytes via nuclear factor kappa-B activation. Journal of the American College of Cardiology 49: 185–194.

    Article  PubMed  CAS  Google Scholar 

  22. Marnell, L., C. Mold, and T.W. Du Clos. 2005. C-reactive protein: Ligands, receptors and role in inflammation. Clinical Immunology 117: 104–111.

    Article  PubMed  CAS  Google Scholar 

  23. Torzewski, M., C. Rist, R.F. Mortensen, T.P. Zwaka, M. Bienek, J. Waltenberger, W. Koenig, G. Schmitz, V. Hombach, and J. Torzewski. 2000. C-reactive protein in the arterial intima: Role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 20: 2094–2099.

    PubMed  CAS  Google Scholar 

  24. Warner, S.J., and P. Libby. 1989. Human vascular smooth muscle cells: Target for and source of tumor necrosis factor. Journal of Immunology 142: 100–109.

    CAS  Google Scholar 

  25. Barath, P., M.C. Fishbein, J. Cao, J. Berenson, R.H. Helfant, and J.S. Forrester. 1990. Detection and localization of tumor necrosis factor in human atheroma. The American Journal of Cardiology 65: 297–302.

    Article  PubMed  CAS  Google Scholar 

  26. Gao, X., X. Xu, S. Belmadani, Y. Park, Z. Tang, A.M. Feldman, W.M. Chilian, and C. Zhang. 2007. TNF-alpha contributes to endothelial dysfunction by upregulating arginase in ischemia/reperfusion injury. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  27. Old, L.J. 1988. Tumor necrosis factor. Scientific American 258: 59–60.

    Article  PubMed  CAS  Google Scholar 

  28. Michelsen, K.S., M.H. Wong, P.K. Shah, W. Zhang, J. Yano, T.M. Doherty, S. Akira, T.B. Rajavashisth, and M. Arditi. 2004. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proceedings of the National Academy of Sciences of the United States of America 101: 10679–10684.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, Y.B., J.W. Schrader, and S.U. Kim. 2000. p38 MAP kinase regulates TNF-alpha production in human astrocytes and microglia by multiple mechanisms. Cytokine 12: 874–880.

    Article  PubMed  CAS  Google Scholar 

  30. Barton, G.M., and R. Medzhitov. 2003. Toll-like receptor signaling pathways. Science 300: 1524–1525.

    Article  PubMed  CAS  Google Scholar 

  31. Lin, F.Y., Y.H. Chen, J.S. Tasi, J.W. Chen, T.L. Yang, H.J. Wang, C.Y. Li, Y.L. Chen, and S.J. Lin. 2006. Endotoxin induces toll-like receptor 4 expression in vascular smooth muscle cells via NADPH oxidase activation and mitogen-activated protein kinase signaling pathways. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 2630–2637.

    Article  PubMed  CAS  Google Scholar 

  32. Sasu, S., D. LaVerda, N. Qureshi, D.T. Golenbock, and D. Beasley. 2001. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circulation Research 89: 244–250.

    Article  PubMed  CAS  Google Scholar 

  33. Zaru, R., N. Ronkina, M. Gaestel, J.S.C. Arthur, and C. Watts. 2007. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nature Immunology 8: 1227–1235.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China to Juntian Liu (no. 30772567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Liu, J., Ji, Y. et al. C-Reactive Protein Induces TNF-α Secretion by p38 MAPK–TLR4 Signal Pathway in Rat Vascular Smooth Muscle Cells. Inflammation 34, 283–290 (2011). https://doi.org/10.1007/s10753-010-9234-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9234-z

KEY WORDS

Navigation