Log in

Cyclin D3/CDK11p58 Complex Involved in Schwann Cells Proliferation Repression Caused by Lipopolysaccharide

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Schwann cells proliferation is the main characterize of kinds PNS inflammation diseases. It has been well documented that cyclin D3 /CDK11p58 complex inhibits cell function through multiple mechanisms, but the mechanism of cyclin D3/CDK11p58 complex exerts its repressive role in the Schwann cells proliferation remains to be identified. In the present investigation, we demonstrated that the expression of CDK11p58 were upregulated in the inflammation caused by LPS, a main part of bactria. Cyclin D3 and the 58-kDa isoform of cyclin-dependent kinase 11 (CDK11p58) interacted with each other mainly in nuclear region, repressed Schwann cells proliferation and induced cell apoptosis. Overexpression of CDK11p58 expression might enhance this process, while silence of cyclin D3 reverting it. This work demonstrates for the first time the role of cyclin D3/CDK11p58 complex in repressing the Schwann cells proliferation and inducing its apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bunge, R.P. 1994. The role of the Schwann cell in trophic support and regeneration. Journal de Neurologie 242: S19–S21.

    Article  CAS  Google Scholar 

  2. Suter, U., and S.S. Scherer. 2003. Disease mechanisms in inherited neuropathies. Nature Reviews. Neuroscience 4: 714–726.

    Article  CAS  PubMed  Google Scholar 

  3. Harrisingh, M.C., and A.C. Lloyd. 2004. Ras/Raf/ERK signalling and NF1. Cell Cycle 3: 1255–1258.

    CAS  PubMed  Google Scholar 

  4. Thomas, G.A. 1948. Quantitative histology of Wallerian degeneration: II. Nuclear population in two nerves of different fibre spectrum. Journal of Anatomy 82: 135–145.

    Google Scholar 

  5. Akoulitchev, S., S. Chuikov, and D. Reinberg. 2000. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407: 102–106.

    Article  CAS  PubMed  Google Scholar 

  6. Akoulitchev, S., and D. Reinberg. 1998. The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes and Development 12: 3541–3550.

    Article  CAS  PubMed  Google Scholar 

  7. Cho, H., G. Orphanides, X. Sun, X.J. Yang, V. Ogryzko, E. Lees, et al. 1998. A human RNA polymerase II complex containing factors that modify chromatin structure. Molecular and Cellular Biology 18: 5355–5363.

    CAS  PubMed  Google Scholar 

  8. Lew, J., K. Beaudette, C.M. Litwin, and J.H. Wang. 1992. Purification and characterization of a novel proline-directed protein kinase from bovine brain. Journal of Biological Chemistry 267: 13383–13390.

    CAS  PubMed  Google Scholar 

  9. Peng, J., N.F. Marshall, and D.H. Price. 1998. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. Journal of Biological Chemistry 273: 13855–13860.

    Article  CAS  PubMed  Google Scholar 

  10. Rickert, P., W. Seghezzi, F. Shanahan, H. Cho, and E. Lees. 1996. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12: 2631–2640.

    CAS  PubMed  Google Scholar 

  11. Serizawa, H., T.P. Makela, J.W. Conaway, R.C. Conaway, R.A. Weinberg, and R.A. Young. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 374: 280–282.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, D.S., P.L. Greer, and L.H. Tsai. 2001. Cdk5 on the brain. Cell Growth and Differentiation 12: 277–283.

    CAS  PubMed  Google Scholar 

  13. Wei, P., M.E. Garber, S.M. Fang, W.H. Fischer, and K.A. Jones. 1998. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92: 451–462.

    Article  CAS  PubMed  Google Scholar 

  14. Bunnell, B.A., L.S. Heath, D.E. Adams, J.M. Lahti, and V.J. Kidd. 1990. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proceedings of the National Academy of Sciences of the United States of America 87: 7467–7471.

    Article  CAS  PubMed  Google Scholar 

  15. Trembley, J.H., P. Loyer, D. Hu, T. Li, J. Grenet, J.M. Lahti, et al. 2004. Cyclin dependent kinase 11 in RNA transcription and splicing. Progress in Nucleic Acid Research and Molecular Biology 77: 263–288.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson, M.A., M.E. Ariza, J.M. Yang, F.H. Thompson, R. Taetle, J.M. Trent, et al. 1999. Abnormalities in the p34cdc2-related PITSLRE protein kinase gene complex (CDC2L) on chromosome band 1p36 in melanoma. Cancer Genetics and Cytogenetics 108: 91–99.

    Article  CAS  PubMed  Google Scholar 

  17. Loyer, P., J.H. Trembley, J.M. Lahti, and V.J. Kidd. 1998. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo. Journal of Cell Science 111(Pt 11): 1495–1506.

    CAS  PubMed  Google Scholar 

  18. Berke, J.D., V. Sgambato, P.P. Zhu, B. Lavoie, M. Vincent, M. Krause, et al. 2001. Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin. Neuron 32: 277–287.

    Article  CAS  PubMed  Google Scholar 

  19. Dickinson, L.A., A.J. Edgar, J. Ehley, and J.M. Gottesfeld. 2002. Cyclin L is an RS domain protein involved in pre-mRNA splicing. Journal of Biological Chemistry 277: 25465–25473.

    Article  CAS  PubMed  Google Scholar 

  20. Cornelis, S., Y. Bruynooghe, G. Denecker, S. Van Huffel, S. Tinton, and R. Beyaert. 2000. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Molecular Cell 5: 597–605.

    Article  CAS  PubMed  Google Scholar 

  21. Petretti, C., M. Savoian, E. Montembault, D.M. Glover, C. Prigent, and R. Giet. 2006. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Reports 7: 418–424.

    CAS  PubMed  Google Scholar 

  22. Bartkova, J., J. Lukas, M. Strauss, and J. Bartek. 1998. Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene 17: 1027–1037.

    Article  CAS  PubMed  Google Scholar 

  23. Arndt, P.G., N. Suzuki, N.J. Avdi, K.C. Malcolm, and G.S. Worthen. 2004. Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-Kinase and Syk-mediated pathways. Journal of Biological Chemistry 279: 10883–10891.

    Article  CAS  PubMed  Google Scholar 

  24. Orlikowski, D., B. Chazaud, A. Plonquet, F. Poron, T. Sharshar, P. Maison, et al. 2003. Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain-Barre syndrome and experimental autoimmune neuritis. Journal of Neuroimmunology 134: 118–127.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, C., Y. Qin, X. Shao, H. Wang, Y. Gao, M. Cheng, et al. 2007. Induction of TNF-alpha by LPS in Schwann cell is regulated by MAPK activation signals. Cellular and Molecular Neurobiology 27: 909–921.

    Article  CAS  PubMed  Google Scholar 

  26. McEwen, M.L., and J.E. Springer. 2005. A map** study of caspase-3 activation following acute spinal cord contusion in rats. The Journal of Histochemistry and Cytochemistry 53: 809–819.

    Article  CAS  PubMed  Google Scholar 

  27. Cernak, I., B. Stoica, K.R. Byrnes, S. Di Giovanni, and A.I. Faden. 2005. Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4: 1286–1293.

    CAS  PubMed  Google Scholar 

  28. Zhang, S., M. Cai, S. Xu, S. Chen, X. Chen, C. Chen, et al. 2002. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3. Journal of biological chemistry 277: 35314–35322.

    Article  CAS  PubMed  Google Scholar 

  29. Lahti, J.M., J. **ang, L.S. Heath, D. Campana, and V.J. Kidd. 1995. PITSLRE protein kinase activity is associated with apoptosis. Molecular and Cellular Biology 15: 1–11.

    CAS  PubMed  Google Scholar 

  30. Kruman, I.I., R.P. Wersto, F. Cardozo-Pelaez, L. Smilenov, S.L. Chan, F.J. Chrest, et al. 2004. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41: 549–561.

    Article  CAS  PubMed  Google Scholar 

  31. Ino, H., and T. Chiba. 2001. Cyclin-dependent kinase 4 and cyclin D1 are required for excitotoxin-induced neuronal cell death in vivo. Journal of Neuroscience 21: 6086–6094.

    CAS  PubMed  Google Scholar 

  32. Shi, J., Y. Feng, A.C. Goulet, R.R. Vaillancourt, N.A. Sachs, J.W. Hershey, et al. 2003. The p34cdc2-related cyclin-dependent kinase 11 interacts with the p47 subunit of eukaryotic initiation factor 3 during apoptosis. Journal of Biological Chemistry 278: 5062–5071.

    Article  CAS  PubMed  Google Scholar 

  33. Beyaert, R., V.J. Kidd, S. Cornelis, M. Van de Craen, G. Denecker, J.M. Lahti, et al. 1997. Cleavage of PITSLRE kinases by ICE/CASP-1 and CPP32/CASP-3 during apoptosis induced by tumor necrosis factor. Journal of Biological Chemistry 272: 11694–11697.

    Article  CAS  PubMed  Google Scholar 

  34. Yun, X., Y. Wu, L. Yao, H. Zong, Y. Hong, J. Jiang, et al. 2007. CDK11(p58) protein kinase activity is associated with Bcl-2 down-regulation in pro-apoptosis pathway. Molecular and Cellular Biochemistry 304: 213–218.

    Article  CAS  PubMed  Google Scholar 

  35. Herzinger, T., and S.I. Reed. 1998. Cyclin D3 is rate-limiting for the G1/S phase transition in fibroblasts. Journal of Biological Chemistry 273: 14958–14961.

    Article  CAS  PubMed  Google Scholar 

  36. Boonen, G.J., B.A. van Oirschot, A. van Diepen, W.J. Mackus, L.F. Verdonck, G. Rijksen, et al. 1999. Cyclin D3 regulates proliferation and apoptosis of leukemic T cell lines. Journal of Biological Chemistry 274: 34676–34682.

    Article  CAS  PubMed  Google Scholar 

  37. Mendelsohn, A.R., J.D. Hamer, Z.B. Wang, and R. Brent. 2002. Cyclin D3 activates Caspase 2, connecting cell proliferation with cell death. Proceedings of the National Academy of Sciences of the United States of America 99: 6871–6876.

    Article  CAS  PubMed  Google Scholar 

  38. Takemoto, K., T. Nagai, A. Miyawaki, and M. Miura. 2003. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. Journal of Cell Biology 160: 235–243.

    Article  CAS  PubMed  Google Scholar 

  39. Ji, Y., F. **ao, L. Sun, J. Qin, S. Shi, J. Yang, et al. 2008. Increased expression of CDK11p58 and cyclin D3 following spinal cord injury in rats. Molecular and Cellular Biochemistry 309: 49–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.30770488 and No.30870320); Natural Science Foundation of Jiangsu province (No.BK2006547); Health Project of Jiangsu Province (H200632); “Liu-Da-Ren-Cai-Gao-Feng” Financial Assistance of Jiangsu Province Grant (No.2); The Society and Technology Grew Project of Nantong City. (S2008020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiguo Shen or **ang Lu.

Additional information

Yinong Duan and **ngxin He contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Y., He, X., Yang, H. et al. Cyclin D3/CDK11p58 Complex Involved in Schwann Cells Proliferation Repression Caused by Lipopolysaccharide. Inflammation 33, 189–199 (2010). https://doi.org/10.1007/s10753-009-9173-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9173-8

KEY WORDS

Navigation