Log in

Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stop** to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stop** station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. König, M., et al.: Int. J. Mass Spectrom. Ion Process. 142, 95 (1995)

    Article  ADS  Google Scholar 

  2. Blaum, K.: Phys. Rep. 425, 1 (2005)

    Article  ADS  Google Scholar 

  3. Smith, M., et al.: Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  4. Block, M., et al.: Nature 463, 785 (2010)

    Article  ADS  Google Scholar 

  5. Weismann, L., et al.: Nucl. Instrum. Methods A 540, 245 (2005)

    Article  ADS  Google Scholar 

  6. Schwarz, S., et al.: Nucl. Instrum. Methods B 204, 474 (2003)

    Article  ADS  Google Scholar 

  7. Sun, T., et al.: Eur. Phys. J. A 25, s01, 61 (2005)

    Article  Google Scholar 

  8. Ringle, R., et al.: Eur. Phys. J. A 25, s01, 59 (2005)

    Article  Google Scholar 

  9. Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  10. Ringle, R., et al.: Hyperfine Interact. (2011). doi:10.1007/s10751-011-0320-x

  11. Ringle, R., et al.: Phys. Rev. C 80, 064321 (2009)

    Article  ADS  Google Scholar 

  12. Ferrer, R.: Phys. Rev. C 81, 044318 (2010)

    Article  ADS  Google Scholar 

  13. Kwiatkowski, A.A., et al.: Phys. Rev. Lett. 80, 051302(R) (2009)

    ADS  Google Scholar 

  14. Ringle, R., et al.: Phys. Rev. C 75, 055503 (2007)

    Article  ADS  Google Scholar 

  15. Schury, P., et al.: Phys. Rev. C 75, 055801 (2007)

    Article  ADS  Google Scholar 

  16. Savory, J., et al.: Phys. Rev. Lett. 102, 132501 (2009)

    Article  ADS  Google Scholar 

  17. Schwarz, S., et al.: Hyperfine Interact. (2011). doi:10.1007/s10751-011-0321-9

  18. Bollen, G., Morrissey, D.J., Schwarz, S.: Nucl. Instrum. Methods A 550, 27 (2005)

    Article  ADS  Google Scholar 

  19. Wada, M., et al.: Nucl. Instrum. Methods B 204, 570 (2003)

    Article  ADS  Google Scholar 

  20. Savard, G., et al.: Hyperfine Interact. (2011). doi:10.1007/s10751-011-0325-5

  21. Bollen, G., Nucl. Phys. A 696, 3 (2001)

    Article  ADS  Google Scholar 

  22. Bergström, I., et al.: Nucl. Instrum. Methods A 487, 618 (2002)

    Article  ADS  Google Scholar 

  23. Lapierre, A., et al.: Nucl. Instrum. Methods A 624, 54 (2010)

    Article  ADS  Google Scholar 

  24. Schury, P., et al.: Hyperfine Interact. 173, 321 (2006)

    Article  Google Scholar 

  25. Guan, S., Marshall, A.G.: Int. J. Mass Spectrom. Ion Process. 157/158, 5 (1996)

    Article  ADS  Google Scholar 

  26. Guan, S., McIver, R.T., Jr.: J. Chem. Phys. 92, 5841 (1990)

    Article  ADS  Google Scholar 

  27. Van Dyck, R.S., Jr., et al.: Rev. Sci. Instrum. 92, 1665 (1999)

    Article  Google Scholar 

  28. Gabrielse, G., et al.: Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  29. Marshall, A.G.: Int. J. Mass Spectrom. 200, 331 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Redshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redshaw, M., Barquest, B.R., Bollen, G. et al. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes. Hyperfine Interact 199, 241–249 (2011). https://doi.org/10.1007/s10751-011-0319-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0319-3

Keywords

Navigation