Log in

Phylogeny of Neolissochilus and studies on intergeneric kinship geography of Cyprinidae

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Accurate species delimitation and phylogenetic reconstruction are vital to understand biodiversity assessments, conservation management, evolutionary patterns, evolutionary processes, and historical biogeography. The taxonomy and phylogeny of the genus Neolissochilus (Cyprinidae) have a confusing history. We investigated the taxonomy and phylogeny of this group and related lineages using complete mitochondrial genome sequence data from 53 Cyprinidae species and one outgroup species. These analyses show that the monophyly of Neolissochilus and Tor is not supported. N. benasi might represent a new genus, and T. qiaojiensis should be moved into Neolissochilus. We estimated divergence times, evaluated the monophyly of this group, their relationship to other cyprinids, as well as the time course and geography of speciation. The results indicated that the family Cyprinidae likely diverged from other taxa during the Eocene (ca. 54.78 Mya), and species of various genera began to undergo massive diversification events during the Cenozoic Tertiary. The differentiation and diffusion of the family Cyprinidae might be attributed to the Qinghai–Tibet Plateau uplift events, one of the geological events marking the Cenozoic Tertiary period, which cut off genetic exchange between populations through geographic isolation, thus facilitating genetic divergence between populations and eventually leading to the formation of new species. In addition, the results of this study still need further improvement. The limitations are mainly due to the small sample size and the use of only mitochondrial data; therefore, it still needs to be further verified by combining nuclear genome data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The genome sequence data supporting the results of this study can be publicly obtained on NCBI GenBank (https://www.ncbi.nlm.nih.gov/) with accession numbers MW762597, OM202514, and OM203155, respectively. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA732218 / PRJNA816692 / PRJNA817097, SRX10970856 / SRR18336527 / SRR18356108, and SAMN19314210 / SAMN26688729 / SAMN26747789, respectively.

References

  • Bernt, M., A. Donath, F. Jühling, et al., 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2): 313–319.

    Article  PubMed  Google Scholar 

  • Bonnet, T., R. Leblois, F. Rousset, et al., 2017. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 71(9): 2140–2158.

    Article  PubMed  Google Scholar 

  • Buroker, N. E., J. R. Brown, T. A. Gilbert, et al., 1990. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124(1): 157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge, C. P., D. Craw & J. M. Waters, 2006. River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evolution 60(5): 1038–1049.

    CAS  PubMed  Google Scholar 

  • Cao, S., Y. Li, X. Miao, et al., 2022. DNA barcoding provides insights into Fish Diversity and Molecular Taxonomy of the Amundsen Sea. Conservation Genetics Resources 14: 281–289.

    Article  CAS  Google Scholar 

  • Chen, X. Y., J. X. Yang & Y. R. Chen, 1999. A review of the cyprinoid fish genus Barbodes Bleeker, 1859, from Yunnan, China, with descriptions of two new species. Zoological Studies 38(1): 82–88.

    Google Scholar 

  • Chen, X. Y. & J. X. Yang, 2003. A systematic revision of “Barbodes” fishes in China. Zoological Research 24(5): 377–386.

    Google Scholar 

  • Chen, L., X. Zhang & H. Liu, 2023. Phylogenetic Relationships of the Pseudogobionini Group (Teleostei: Cyprinidae) with Selection Pressure Analyses to Genes of Mitochondrial Genome. Fishes 8(4): 201.

    Article  Google Scholar 

  • Cui, J. L., Zhang, H., Gao, X., et al. 2022. Correlations of expression of nuclear and mitochondrial genes in triploid fish. G3: Genes, Genomes, Genetics, 12(9): jkac197.

  • Dash, P., C. Siva, R. S. Tandel, et al., 2023. Temperature alters the oxidative and metabolic biomarkers and expression of environmental stress-related genes in chocolate mahseer (Neolissochilus hexagonolepis). Environmental Science and Pollution Research 30(15): 43203–43214.

    Article  CAS  PubMed  Google Scholar 

  • Davies, W., S. Kran, T. Kristensen, et al., 2010. Characterization of a porcine variable number tandem repeat sequence specific for the glucosephosphate isomerase locus. Animal Genetics 23(5): 437–441.

    Article  Google Scholar 

  • Ding, Z. L., J. Z. Ren, S. L. Yang, et al., 1999. Climate instability during the penultimate glaciation: Evidence from two high-resolution loess records, China. Journal of Geophysical Research: Solid Earth 104(B9): 20123–20132.

    Article  Google Scholar 

  • Faber, J. E. & C. A. Stepien, 1998. Tandemly repeated sequences in the mitochondrial DNA control region and phylogeography of the Pike-Perches Stizostedion. Molecular Phylogenetics & Evolution 10(3): 310–322.

    Article  CAS  Google Scholar 

  • Gissi, C., Iannelli, F., Pesole, G. 2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity: An International Journal of Genetics, 101(4): 301–320.

  • Gong, X., C. Meng, H. Xu, et al., 2019. Characterization of the complete mitochondrial genome of Onychostoma macrolepis (Teleostei: Cyprinidae). Mitochondrial DNA Part B 4(2): 3551–3552.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., W. Marjorie, B. D. Donald, et al., 2021. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic. Nature Communications 12(1): 3891–3905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Y. Y., Y. Wang, C. Y. Yin, et al., 2023. Characterization of the complete mitochondrial genome of Neolissochilus hendersoni (Herre, 1940) (Cypriniformes: Cyprinidae). Mitochondrial DNA Part B 8(1): 133–135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, T. A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41(41): 95–98.

    CAS  Google Scholar 

  • He, J. H., C. F. Zhao, Y. Y. Guo, et al., 2021. Completely mitochondrial genome of Neolissochilus heterostomus. Mitochondrial DNA Part B 6(9): 2708–2709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, J. T., H. J. Li, H. Sakai, et al., 2023. Molecular phylogenetics of the fresh water sleepers Odontobutis (Gobiiformes: Odontobutidae) and its implications on biogeography of freshwater ichthyofauna of East Asia. Molecular Phylogenetics and Evolution 186: 107871.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, L. D., 2002. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends in Genetics 18(9): 486.

    Article  PubMed  Google Scholar 

  • Jiang, Y., I. J. Garzón-Ordua, S. L. Winterton, et al., 2017. Phylogenetic relationships among tribes of the green lacewing subfamily Chrysopinae recovered based on mitochondrial phylogenomics. Scientific Reports 7(1): 7218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, F., M. Grabherr, Y. Chan, et al., 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484: 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, et al., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaironizam, M. Z., M. Akaria-Ismail & J. W. Armbruster, 2015. Cyprinid fishes of the genus Neolissochilus in Peninsular Malaysia. Zootaxa 3962: 139–157.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., G. Stecher, M. Li, et al., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusuma, W. E., S. Ratmuangkhwang & Y. Kumazawa, 2016. Molecular phylogeny and historical biogeography of the Indonesian freshwater fish Rasbora lateristriata species complex (Actinopterygii: Cyprinidae): Cryptic species and west-to-east divergences. Molecular Phylogenetics and Evolution 105: 212–223.

    Article  PubMed  Google Scholar 

  • Lai, R. F., X. J. Zhang, Y. H. Li, et al., 2014. Comparison of mitochondrial genomes of the genus Megalobrama and their phylogenetic analysis. Journal of Fisheries of China 38(1): 1–14.

    CAS  Google Scholar 

  • Lalramliana, L. S., Kumar, S., et al. 2019. DNA barcoding revealed a new species of Neolissochilus Rainboth, 1985 from the Kaladan River of Mizoram, North East India. Mitochondrial DNA Part A, DNA map**, sequencing, and analysis, 30(1): 52–59.

  • Lei, F., Y. Qu & G. Song, 2014. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Current Zoology 60(2): 149–161.

    Article  Google Scholar 

  • Li, Y., C. P. Burridge, Y. Lv, et al., 2021. Morphometric and population genomic evidence for species divergence in the Chimarrichthys fish complex of the Tibetan Plateau. Molecular Phylogenetics and Evolution 159: 107117.

    Article  PubMed  Google Scholar 

  • Li, J., Y. Peng, S. Zhang, et al., 2022. The complete mitochondrial genome of Parachiloglanis hodgarti and its phylogenetic position within Sisoridae. Journal of Oceanology and Limnology 41(1): 267–279.

    Article  CAS  Google Scholar 

  • Liu, L., Teslenko, M., Hohna, S., et al. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3): 539–542.

  • Liu, Y. P., J. Y. Hu, Z. J. Ning, et al., 2023. Mitochondrial genome sequence characteristics and phylogenetic analysis of Schizothorax argentatus. Chinese Journal of Biotechnology 39(7): 2965–2985.

    CAS  PubMed  Google Scholar 

  • Lohse, M., O. Drechsel & R. Bock, 2007. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics 52(5–6): 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, E. M., R. Pérez-Portela, P. C. Paiva, et al., 2016. The molecular phylogeny of the sea star Echinaster (Asteroidea: Echinasteridae) provides insights for genus taxonomy. Invertebrate Biology 135(3): 235–244.

    Article  Google Scholar 

  • Lowe, T. M. & S. R. Eddy, 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minh, B. Q., H. A. Schmidt, O. Chernomor, et al., 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution 37(8): 2461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy, M. P., 2009. How mitochondria produce reactive oxygen species? Biochemical Journal 417(1): 105–111.

    Article  Google Scholar 

  • Nelson, J. S., Grande, T. C., Wilson, M. V. H. 2016. Fishes of the World, 5th Edition.

  • Peng, R., B. Zeng, X. Meng, et al., 2007. The complete mitochondrial genome and phylogenetic analysis of the giant panda (Ailuropoda melanoleuca). Gene 397(1–2): 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Perna, N. T. & T. D. Kocher, 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution 41(3): 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Puttick, M. N., 2019. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35(24): 5321–5322.

    Article  CAS  PubMed  Google Scholar 

  • Rabosky, D. L., J. Chang, P. O. Title, et al., 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559: 392–395.

    Article  CAS  PubMed  Google Scholar 

  • Rainboth, W. J., 1985. Neolissochilus, a new genus of south Asian Cyprinid fishes. Beaufortia 35: 25–35.

    Google Scholar 

  • Rambaut, A., Drummond, A. J., **e, D., et al. 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5): 901–904.

  • Romero-Mujalli, D., F. Jeltsch & R. Tiedemann, 2019. Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change. BMC Evol Biol 19: 175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozas, J., J. C. Sánchezdelbarrio, X. Messeguer, et al., 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18): 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh, K., T. Sado, R. L. Mayden, et al., 2006. Mitogenomic Evolution and Interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): The First Evidence Toward Resolution of Higher-Level Relationships of the World’s Largest Freshwater Fish Clade Based on 59 Whole Mitogenome Sequences. Journal of Molecular Evolution 63(6): 826–841.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Q. Y., Li, X. B., Yu, D., et al. 2018. Saurogobio punctatus sp. nov., a new cyprinid gudgeon (Teleostei: Cypriniformes) from the Yangtze River, based on both morphological and molecular data. J Fish Biol, 92: 347–364.

  • Tian, H. W. 2010. Preliminary comparative studies on the biology and stock biomass of Poropuntius opisthopterus and Neolissochilus wynaadensis from the Nu River[D]. Huazhong Agricultural University.

  • Wang, Z. D. 2009. The molecular phylogenetics of Lutjanid fishes of the genus Lutjanus from China[D]. Hunan Normal University.

  • Wang, Z. L., C. Li, W. Y. Fang, et al., 2016. The complete mitochondrial genome of two Tetragnatha spiders (Araneae: Tetragnathidae): severe truncation of tRNAs and novel gene rearrangements in Araneae. International Journal of Biological Sciences 12(1): 109–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Z. Z., B. Zhao, X. Y. Lin, et al., 2022. The complete mitochondrial genome of Neolissochilus stracheyi (Osteichthyes: Cyprinidae). Mitochondrial DNA Part B 7(8): 1492–1493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolter, C. & A. Sukhodolov, 2010. Random displacement versus habitat choice of fish larvae in rivers. River Research and Applications 24(5): 661–672.

    Article  Google Scholar 

  • Wu, X., Q. Wei, Y. Shang, et al., 2021. High-altitude adaptation in vertebrates as revealed by mitochondrial genome analyses. Ecology and Evolution 11(21): 15077–15084.

    Article  PubMed  PubMed Central  Google Scholar 

  • **e, J. M., Y. R. Chen, G. J. Cai, et al., 2023. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research 51(W1): W587–W592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, M., Z. Gu, J. Huang, et al., 2023. The complete mitochondrial genome of Mytilisepta virgata (Mollusca: Bivalvia), novel gene rearrangements, and the phylogenetic relationships of Mytilidae. Genes 14(4): 910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. H., J. X. Yang, X. F. Pan, et al., 2011. Fishery resource protection by artificial propagation in hydroelectric development: Lixianjiang River drainage in Yunnan as an example. Zoological Research 32(2): 188–195.

    CAS  PubMed  Google Scholar 

  • Yang, L. D., Y. Wang, Z. L. Zhang, et al., 2015. Comprehensive Transcriptome Analysis Reveals Accelerated Genic Evolution in a Tibet Fish, Gymnodiptychus pachycheilus. Genome Biology & Evolution 1: 251–261.

    Article  Google Scholar 

  • Yang, T. Y., Y. L. Jiang, Y. J. Guo, et al., 2020. Molecular phylogeny of Harpadonnehereus and its close relatives based on mitochondrial Cytb gene. Transactions of Oceanology and Limnology 6: 77–85.

    Google Scholar 

  • Yang, H., T. Chen & W. Dong, 2023. Divergence time of mites of the family Laelapidae based on mitochondrial barcoding region. PLoS ONE 18(2): e0279598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, L. Y. 2009. Monophyly, phylogenetic relationships, and taxonomic revision of the genus Acrossocheilus[D]. Institute of Hydrobiology, Chinese Academy of Sciences.

  • Yuan, L. Y., Wu, Z. Q., & Zhang, E. (2006) Acrossocheilus spinifer a new species of barred cyprinid fish from south China (Pisces: Teleostei). Journal of Fish Biology 68(SB): 163–173. https://doi.org/10.1111/jfb.2006.68.issue-SB

    Article  PubMed  Google Scholar 

  • Zhang, D., F. Gao, I. Jakovli, et al., 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20(1): 348–355.

    Article  PubMed  Google Scholar 

  • Zheng, L. P., J. X. Yang & X. Y. Chen, 2016. Molecular phylogeny and systematics of the Barbinae (Teleostei: Cyprinidae) in China inferred from mitochondrial DNA sequences. Biochemical Systematics and Ecology 68: 250–259.

    Article  CAS  Google Scholar 

  • Zhou, T., X. Shen, D. M. Irwin, et al., 2014. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds. Mitochondrion 18: 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S. H., W. J. Zheng, J. X. Zou, et al., 2007. Mitochondrial DNA Control Region Structure and Molecular Phylogenetic Relationship of Carangidae. Zoological Research 6: 606–614.

Download references

Acknowledgements

We thank Dr. Lihua Jiang and senior sister Liyi Pei for the assistance in bioinformatics analysis. We also thank many anonymous reviewers for their valuable comments on the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31801246), and Students Science and Technology Innovation Activity Plan of Zhejiang Province (also known as “New Seedling Talent Plan”) (Grant No. 2022411006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhao or Shuirong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling editor: Christian Sturmbauer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Supplementary file2 (DOCX 24424 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., He, J., Huang, H. et al. Phylogeny of Neolissochilus and studies on intergeneric kinship geography of Cyprinidae. Hydrobiologia (2024). https://doi.org/10.1007/s10750-024-05628-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-024-05628-w

Keywords

Navigation