Log in

Seasonal variations of the trophic niche width of Hemimysis anomala in Lake Geneva

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The trophic niche of invasive species can vary overtime because of different processes related to ecological opportunity and invader activity that condition biological interactions with the native biodiversity. We conducted an annual-based survey of the trophic niche of the mysid Hemimysis anomala in the largest European peri-alpine lake by combining molecular and isotope analyses. We hypothesized that the population trophic niche width would vary seasonally, expanding in warm periods due to greater ecological opportunities and higher mysid metabolic activity. Molecular analyses identified a diversified set of prey throughout the year ranging from autotrophic protists to zooplankton and converged with isotope analyses to support the diet seasonality hypothesis of H. anomala with wider trophic niches and, in a lower extent, richer diets in spring and summer when compared to autumn and winter. Isotope analyses also highlighted a seasonal pattern in resources used with a dominance of pelagic reliance in summer and autumn. These results underlined the significant seasonal variability in the trophic niche of this invasive mysid suggesting that future assessments of its ecological impacts should account for the temporal variations of its trophic interactions with the native biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and R codes are available upon request to the corresponding author.

References

  • Andvik, R. T., J. A. VanDeHey, M. J. Fincel, W. E. French, K. N. Bertrand, S. R. Chipps, R. A. Klumb & B. D. S. Graeb, 2010. Technical contribution: Application of non-lethal stable isotope analysis to assess feeding patterns of juvenile pallid sturgeon Scaphirhynchus albus: a comparison of tissue types and sample preservation methods. Journal of Applied Ichthyology 26: 1–5.

    Article  Google Scholar 

  • Araújo, M. S. & R. Costa-Pereira, 2013. Latitudinal gradients in intraspecific ecological diversity. Biology Letters 9: 20130778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo, M. S., D. I. Bolnick & C. A. Layman, 2011. The ecological causes of individual specialisation. Ecology Letters 14: 948–958.

    Article  PubMed  Google Scholar 

  • Beck, M., 2017. ggord: ordination plots with ggplot2. R package version 100.

  • Bolnick, D. I., L. H. Yang, J. A. Fordyce, J. M. Davis & R. Svanbäck, 2002. Measuring individual-level resource specialization. Ecology 83: 2936–2941.

    Article  Google Scholar 

  • Bolnick, D., R. Svanbäck, J. Fordyce, L. Yang, J. Davis, D. Hulsey & M. Forister, 2003. The ecology of individuals: incidence and implications of individual specialization. The American Naturalist 161: 1–28.

    Article  PubMed  Google Scholar 

  • Bolnick, D. I., L. K. Snowberg, C. Patenia, W. E. Stutz, T. Ingram & O. L. Lau, 2009. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63: 2004–2016.

    Article  PubMed  Google Scholar 

  • Borcherding, J., S. Murawski & H. Arndt, 2006. Population ecology, vertical migration and feeding of the Ponto-Caspian invader Hemimysis anomala in a gravel-pit lake connected to the River Rhine. Freshwater Biology 51: 2376–2387.

    Article  Google Scholar 

  • Boscarino, B. T., S. Oyagi, E. K. Stapylton, K. E. McKeon, N. O. Michels, S. F. Cushman & M. E. Brown, 2020. The influence of light, substrate, and fish on the habitat preferences of the invasive bloody red shrimp, Hemimysis anomala. Journal of Great Lakes Research 46: 311–322.

    Article  CAS  Google Scholar 

  • Boyer, F., C. Mercier, A. Bonin, et al., 2016. OBITools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources 16: 176–182.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J., J. Gillooly, A. Allen, V. Savage & G. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Brown, M. E., K. L. Buffington, L. B. Cleckner & N. R. Razavi, 2022. Elevated methylmercury concentration and trophic position of the non-native bloody red shrimp (Hemimysis anomala) increase biomagnification risk in nearshore food webs. Journal of Great Lakes Research 48: 252–259.

    Article  CAS  Google Scholar 

  • Calderón-Sanou, I., T. Münkemüller, F. Boyer, L. Zinger & W. Thuiller, 2020. From environmental DNA sequences to ecological conclusions: how strong is the influence of methodological choices? Journal of Biogeography 47: 193–206.

    Article  Google Scholar 

  • CIPEL, 2022. Rapports sur les études et recherches entreprises dans le bassin lémanique: campagne, p 250.

  • Cucherousset, J. & S. Villeger, 2015. Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecological Indicators 56: 152–160.

    Article  CAS  Google Scholar 

  • David, P., E. Thébault, O. Anneville, P. F. Duyck, E. Chapuis & N. Loeuille, 2017. Chapter One: impacts of invasive species on food webs: a review of empirical data. In Bohan, D. A., A. J. Dumbrell & F. Massol (eds), Advances in Ecological Research, Vol. 56. Academic Press: 1–60.

    Google Scholar 

  • Deagle, B. E., A. C. Thomas, J. C. McInnes, L. J. Clarke, E. J. Vesterinen, E. L. Clare, T. R. Kartzinel & J. P. Eveson, 2019. Counting with DNA in metabarcoding studies: how should we convert sequence reads to dietary data? Molecular Ecology 28: 391–406.

    Article  PubMed  Google Scholar 

  • Dumont, S. & C. Muller, 2010. Distribution, ecology and impact of a small invasive shellfish, Hemimysis anomala in Alsatian water. Biological Invasions 12: 495–500.

    Article  Google Scholar 

  • Eby, L. A., W. J. Roach, L. B. Crowder & J. A. Stanford, 2006. Effects of stocking-up freshwater food webs. Trends in Ecology & Evolution 21: 576–584.

    Article  Google Scholar 

  • Englund, G., G. Öhlund, C. L. Hein & S. Diehl, 2011. Temperature dependence of the functional response. Ecology Letters 14: 914–921.

    Article  PubMed  Google Scholar 

  • Evans, T. M., R. Naddafi, B. C. Weidel, B. F. Lantry, M. G. Walsh, B. T. Boscarino, O. E. Johannsson & L. G. Rudstam, 2018. Stomach contents and stable isotopes analysis indicate Hemimysis anomala in Lake Ontario are broadly omnivorous. Journal of Great Lakes Research 44: 467–475.

    Article  Google Scholar 

  • Ficetola, G. F., E. Coissac, S. Zundel, et al., 2010. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11: 434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finger, D., A. Wüest & P. Bossard, 2013. Effects of oligotrophication on primary production in peri-alpine lakes. Water Resources Research 49: 4700–4710.

    Article  CAS  Google Scholar 

  • Frossard, V. & D. Fontvieille, 2018. What is the invasiveness of Hemimysis anomala (Crustacea, Mysidae) in the large deep Lake Bourget, France? Hydrobiologia 814: 219–232.

    Article  Google Scholar 

  • Geisthardt, E. J., B. C. Suedel & J. A. Janssen, 2022. A Hemimysis-driven novel ecosystem at a modified rubble-mound breakwater: an engineering with nature® demonstration project. Integrated Environmental Assessment and Management 18: 49–62.

    Article  PubMed  Google Scholar 

  • Giraudoux, P., 2022. pgirmess: Spatial Analysis and Data Mining for Field Ecologists. R package version 2.0.0. Available on interenet at https://CRANR-project.org/package=pgirmess

  • Golaz, F. & R. Vainola, 2013. Répartition, dynamique saisonnière et analyse de l’ADN mitochondrial du crustacé mysidé invasif Hemimysis anomala G.O. Sars 1907 dans le Léman. Bulletin De La Société Vaudoise Des Sciences Naturelles 93: 101–117.

    Google Scholar 

  • Grosbois, G. & M. Rautio, 2018. Active and colorful life under lake ice. Ecology 99: 752–754.

    Article  PubMed  Google Scholar 

  • Guillerault, N., S. Bouletreau, A. Iribar, A. Valentini & F. Santoul, 2017. Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet. Journal of Fish Biology 90: 2214–2219.

    Article  PubMed  CAS  Google Scholar 

  • Guillerault, N., S. Boulêtreau & F. Santoul, 2019. Predation of European catfish on anadromous fish species in an anthropised area. Marine and Freshwater Research 70: 682–686.

    Article  Google Scholar 

  • Halpin, K. E., B. T. Boscarino, L. G. Rudstam, M. G. Walsh & B. F. Lantry, 2013. Effect of light, prey density, and prey type on the feeding rates of Hemimysis anomala. Hydrobiologia 720: 101–110.

    Article  Google Scholar 

  • Huryn, A., 1996. An appraisal of the Allen paradox in a New Zealand trout stream. Limnology and Oceanography 41: 243–252.

    Article  Google Scholar 

  • Ives, J., M. Marty, Y. de Lafontaine, T. Johnson, M. Koops & M. Power, 2013. Spatial variability in trophic offset and food sources of Hemimysis anomala in lentic and lotic ecosystems within the Great Lakes basin. Journal of Plankton Research 35: 772–784.

    Article  Google Scholar 

  • Jackson, A., R. Inger, A. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602.

    Article  PubMed  Google Scholar 

  • Jardine, T., S. McGeachy, C. Paton, M. Savoie & R. A. Cunjak, 2003. Stable isotopes in aquatic systems: sample preparation, analysis, and interpretation. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2656: 39

  • Ketelaars, H. M., F. Lambregts-van de Clundert, C. Carpentier, A. Wagenvoort & W. Hoogenboezem, 1999. Ecological effects of the mass occurrence of the Ponto-Caspian invader, Hemimysis anomala G.O. Sars, 1907 (Crustacea: Mysidacea), in a freshwater storage reservoir in the Netherlands, with notes on its autecology and new records. Hydrobiologia 394: 233–248.

    Article  Google Scholar 

  • Layman, C., A. Arrington, C. Montana & D. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.

    Article  PubMed  Google Scholar 

  • Leggett, M. F., M. R. Servos, R. Hesslein, O. Johannsson, E. S. Millard & D. G. Dixon, 1999. Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota. Canadian Journal of Fisheries and Aquatic Sciences 56: 2211–2218.

    Article  Google Scholar 

  • Leggett, M. F., O. Johannsson, R. Hesslein, D. G. Dixon, W. D. Taylor & M. R. Servos, 2000. Influence of inorganic nitrogen cycling on the δ15N of Lake Ontario biota. Canadian Journal of Fisheries and Aquatic Sciences 57: 1489–1496.

    Article  Google Scholar 

  • Marty, J., K. Bowen, M. Koops & M. Power, 2010. Distribution and ecology of Hemimysis anomala, the latest invader of the Great Lakes basin. Hydrobiologia 647: 71–80.

    Article  CAS  Google Scholar 

  • Marty, J., J. Ives, Y. de Lafontaine, S.-P. Despatie, M. Koops & M. Power, 2012. Evaluation of carbon pathways supporting the diet of invasive Hemimysis anomala in a large river. Journal of Great Lakes Research 38: 45–51.

    Article  Google Scholar 

  • McGaw, I. J. & D. L. Curtis, 2013. A review of gastric processing in decapod crustaceans. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology 183: 443–465.

    Article  PubMed  Google Scholar 

  • Mercier, C., F. Boyer, E. Kopylova, P. Taberlet, A. Bonin & E. Coissac, 2013. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. Programs and Abstracts of the SeqBio 2013 Workshop, 27–29.

  • Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica Et Cosmochimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Moller Pillot, H. K. M., 2014. Chironomidae Larvae, Vol. 3: Orthocladiinae, Biology and Ecology of the Aquatic Orthocladiinae. BRILL. ISBN: 978-90-5011-459-2

  • Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.

    Article  Google Scholar 

  • Oksanen, J., G. Simpson, F. Blanchet, R. Kindt, P. Legendre, P. Minchin, R. O’Hara, P. Solymos, M. Stevens, E. Szoecs, H. Wagner, M. Barbour, M. Bedward, B. Bolker, D. Borcard, G. Carvalho, M. Chirico, M. De Caceres, S. Durand, H. Evangelista, R. FitzJohn, M. Friendly, B. Furneaux, G. Hannigan, M. Hill, L. Lahti, D. McGlinn, M. Ouellette, C. Ribeiro, E., T. Smith, A. Stier, C. Ter Braak & J. Weedon, 2022. vegan: Community Ecology Package_. R package version 2.6–2. Available on internet at https://CRANR-project.org/package=vegan

  • Olsson, K., P. Stenroth, P. Nyström & W. Granéli, 2009. Invasions and niche width: does niche width of an introduced crayfish differ from a native crayfish? Freshwater Biology 54: 1731–1740.

    Article  Google Scholar 

  • Parnell, A., D. Phillips, S. Bearhop, B. Semmens, E. Ward, J. Moore, A. Jackson & R. Inger, 2012. Bayesian Stable Isotope Mixing Models. Evironmetrics:eprint ar**v:1209.6457

  • Parnell, A., 2021. simmr: A Stable Isotope Mixing Model. R package version 045. https://CRAN.R-project.org/package=simmr

  • Pérez-Fuentetaja, A. & J. Wuerstle, 2014. Prey size selection and feeding ecology of an omnivorous invader: Hemimysis anomala. Journal of Great Lakes Research 40: 257–264.

    Article  Google Scholar 

  • Pothoven, S. A., I. A. Grigorovich, G. L. Fahnenstiel & M. D. Balcer, 2007. Introduction of the Ponto-Caspian Bloody-red Mysid Hemimysis anomala into the Lake Michigan Basin. Journal of Great Lakes Research 33: 285–292.

    Article  Google Scholar 

  • R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. Available on internet at http://www.R-project.org/

  • Rall, B. C., U. Brose, M. Hartvig, G. Kalinkat, F. Schwarzmüller, O. Vucic-Pestic & O. L. Petchey, 2012. Universal temperature and body-mass scaling of feeding rates. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 2923–2934.

    Article  Google Scholar 

  • Ricciardi, A., S. Avlijas & J. Marty, 2012. Forecasting the ecological impacts of the Hemimysis anomala invasion in North America: lessons from other freshwater mysid introductions. Journal of Great Lakes Research 38: 7–13.

    Article  Google Scholar 

  • Rimet, F., A. Bouchez & K. Tapolczai, 2016. Spatial heterogeneity of littoral benthic diatoms in a large lake: monitoring implications. Hydrobiologia 771(1): 179–193.

    Article  Google Scholar 

  • Roughgarden, J., 1979. Theory of Population Genetics and Evolutionary Ecology: An Introduction, Macmillan, New York:

    Google Scholar 

  • Sánchez-Hernández, J., A. G. Finstad, J. V. Arnekleiv, G. Kjærstad & P.-A. Amundsen, 2021. Beyond ecological opportunity: prey diversity rather than abundance shapes predator niche variation. Freshwater Biology 66: 44–61.

    Article  Google Scholar 

  • Schnell, I. B., K. Bohmann & M. T. P. Gilbert, 2015. Tag jumps illuminated – reducing sequence-to-samplemisidentifications in metabarcoding studies. Molecular Ecology Resources 15: 1289–1303.

    Article  PubMed  CAS  Google Scholar 

  • Sentis, A., J. L. Hemptinne & J. Brodeur, 2012. Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia 169: 1117–1125.

    Article  PubMed  Google Scholar 

  • Sinclair, J. S., S. E. Arnott & A. Cox, 2016. The quick and the dead: copepods dominate as cladocerans decline following invasion by Hemimysis anomala. Canadian Journal of Fisheries and Aquatic Sciences 73: 793–803.

    Article  Google Scholar 

  • Stroud, J. T. & J. B. Losos, 2016. Ecological opportunity and adaptive radiation. Annual Review of Ecology, Evolution, and Systematics 47: 507–532.

    Article  Google Scholar 

  • Svanbäck, R. & D. I. Bolnick, 2007. Intraspecific competition drives increased resource use diversity within a natural population. Philosophical Transactions of the Royal Society B: Biological Sciences 274: 839–844.

    Google Scholar 

  • Taberlet, P., A. Bonin, L. Zinger & E. Coissac, 2018. Environmental DNA: For Biodiversity Research and Monitoring, Oxford University Press, Oxford:, 272.

    Book  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.

    Article  Google Scholar 

  • Walsh, J. R., S. R. Carpenter & M. J. Vander Zanden, 2016. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences 113: 4081–4085.

    Article  CAS  Google Scholar 

  • Weisse, T., H. Müller, R. Pinto-Coelho, A. Schweizer, D. Springmann & G. Baldringer, 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnology and Oceanography 35: 781–794.

    Article  Google Scholar 

  • Wellborn, G. A. & R. B. Langerhans, 2015. Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution 5: 176–195.

    Article  PubMed  Google Scholar 

  • Wickham, H. & M. Girlich, 2022. tidyr: Tidy Messy Data_. R package version 1.2.1. https://CRANR-project.org/package=tidyr

  • Wickham, H., R. François, L. Henry & K. Müller, 2022. dplyr: A Grammar of Data Manipulation. R package version 1010. https://CRAN.R-project.org/package=dplyr

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag: New York. ISBN :978-3-319-24277-4.

  • Wittmann, K. & A. Ariani, 2009. Reappraisal and range extension of non-indigenous Mysidae (Crustacea, Mysida) in continental and coastal waters of eastern France. Biological Invasions 11: 401–407.

    Article  Google Scholar 

  • Zinger, L., C. Lionnet, A. S. Benoiston, J. Donald, C. Mercier & F. Boyer, 2021. metabaR: an R package for the evaluation and improvement of DNA metabarcoding data quality. Methods in Ecology and Evolution 12: 586–592.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Pôle R&D Ecosystèmes Lacustres (ECLA) for funding the MYSILAC project. SJ was assisted by Jonathan Grimond from the SUBBEAR company during diving sessions. We are indebted to three anonymous reviewers for providing valuable suggestions that improved the early versions of the manuscript. We also would like to thank SILVATECH (Silvatech, INRAE, 2018. Structural and functional analysis of tree and wood Facility, https://doi.org/10.15454/1.5572400113627854E12) for stable isotope analyses.

Funding

Pôle R&D Ecosystèmes Lacustres (ECLA) for funding the MYSILAC project.

Author information

Authors and Affiliations

Authors

Contributions

Conceived project: VF and SJ. Analyzed data: VF and CV. Original draft preparation: VF, SJ, and CV. All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Corresponding author

Correspondence to Victor Frossard.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethical approval

There was no requirement for ethical approval for the sampling of H. anomala.

Additional information

Handling editor: Ülkü Nihan Tavşanoğlu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 573 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frossard, V., Vagnon, C. & Jacquet, S. Seasonal variations of the trophic niche width of Hemimysis anomala in Lake Geneva. Hydrobiologia 851, 487–501 (2024). https://doi.org/10.1007/s10750-023-05334-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05334-z

Keywords

Navigation