Log in

Sex in crowded places: population density regulates reproductive strategy

  • TRENDS IN AQUATIC ECOLOGY III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Changing reproductive strategy from investment in current (asexual eggs) to future (sexual ephippia) reproduction depending on environmental cues is an important fitness trait in zooplankton species like water fleas, Daphnia. Different cues are reported for ephippia production, for example food limitation, changes in photoperiod and temperature, the presence of predators, nutrient depletion or signals of crowding. However, the reliability of these cues strongly depends on the local habitat. In Daphnia galeata, ephippia production might not be subject to any of the environmental cues outlined. Here, we directly test whether changes in crowding alone provides a reliable cue for D. galeata to switch reproductive mode. We conducted life history assays using 10 genotypes of D. galeata from a Swiss Lake to investigate density dependent reproduction and production of ephippia. We started populations at different densities and eliminated competition for food by systematically increasing food availability with population size. Our results suggest that population density depresses population growth rate via a change in energy allocation from current into future reproduction in D. galeata. Thus, signals of crowding produced at high population density constitute a reliable and sufficient cue for D. galeata to switch from asexual to sexual reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and processing scripts used in this study will be available on github/lhaltiner.

References

  • Auld, S. K. J. R., S. K. Tinkler & M. C. Tinsley, 2016. Sex as a strategy against rapidly evolving parasites. Proceedings of the Royal Society B: Biological Sciences 283: 20162226.

    Article  PubMed  PubMed Central  Google Scholar 

  • AWEL Kanton Zürich Switzerland, 2019. Depth profiles Greifensee. [available on internet at https://awel.zh.ch/internet/baudirektion/awel/de/wasser/messdaten/see_qualitaet.html].

  • Begon, M., J. L. Harper & C. R. Townsend, 1986. Ecology: Individuals, Populations and Communities. Blackwell, Oxford.

    Google Scholar 

  • Benzie, J. A. H., 2005. The Genus Daphnia (Including Daphniopsis)(Anomopoda: Daphniidae). Kenobi Productions, Backhuys Publishers, Ghent, Leiden.

    Google Scholar 

  • Bittner, K., K. O. Rothhaupt & D. Ebert, 2002. Ecological interactions of the microparasite Caullerya mesnili and its host Daphnia galeata. Limnology and Oceanography 47: 300–305.

    Article  Google Scholar 

  • Black, A. R. & S. I. Dodson, 2003. Ethanol: a better preservation technique for Daphnia. Limnology and Oceanography: Methods 1: 45–50.

    Google Scholar 

  • Boersma, M., P. Spaak & L. De Meester, 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. The American Naturalist 152: 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Booksmythe, I., N. Gerber, D. Ebert & H. Kokko, 2018. Daphnia females adjust sex allocation in response to current sex ratio and density. Ecology Letters 21: 629–637.

    Article  PubMed  Google Scholar 

  • Brede, N., C. Sandrock, D. Straile, P. Spaak, T. Jankowski, B. Streit & K. Schwenk, 2009. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proceedings of the National Academy of Sciences 106: 4758–4763.

    Article  Google Scholar 

  • Brooks, M. E., K. Kristensen, K. J. van Bethem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Maechler & B. M. Bolker, 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9: 378–400.

    Article  Google Scholar 

  • Burns, C. W., 1969. Particle size and sedimentation in the feeding behavior of two species of Daphnia. Limnology and Oceanography 14: 392–402.

    Article  Google Scholar 

  • Cáceres, C. E., 1998. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79: 1699–1710.

    Article  Google Scholar 

  • Cleuvers, M., B. Goser & H. Ratte, 1997. Life-strategy shift by intraspecific interaction in Daphnia magna: change in reproduction from quantitiy to quality. Oecologia 110: 337–345.

    Article  PubMed  Google Scholar 

  • Deng, H. W., 1996. Environmental and genetic control of sexual reproduction in Daphnia. Heredity 76: 449–458.

    Article  Google Scholar 

  • Ebert, D., 1995. The ecological interactions between a microsporidian parasite and its host Daphnia magna. The Journal of Animal Ecology 64: 361–369.

    Article  Google Scholar 

  • Edmondson, W. T., 1960. Reproductive rates of rotifers in natural populations. Memorie dell’Istituto Italiano di Idrobiologia 12: 21–77.

    Google Scholar 

  • Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in analysis of variance. Journal of the American Statistical Association 32: 675–701.

    Article  Google Scholar 

  • Gerber, N., H. Kokko, D. Ebert & I. Booksmythe, 2018. Daphnia invest in sexual reproduction when its relative costs are reduced. Proceedings of the Royal Society B: Biological Sciences 285: 20172176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillard, R. R. L., 1975. Culture of phyoplankton for feeding marine invertebrates. In Smith, W. L. & M. H. Chantey (eds), Culture Marine Invertebrate Animals. Springer, Boston: 29–60.

    Chapter  Google Scholar 

  • Hobaek, A. & P. Larsson, 1990. Sex determination in Daphnia magna. Ecology 71: 2255–2268.

    Article  Google Scholar 

  • Jankowski, T. & D. Straile, 2003. A comparison of egg-bank and long-term plankton dynamics of two Daphnia species, D. hyalina and D. galeata: potentials and limits of reconstruction. Limnology and Oceanography 48: 1948–1955.

    Article  Google Scholar 

  • Jarnagin, T. S., B. K. Swan & C. W. Kerfoot, 2000. Fish as vectors in the dispersal of Bythotrephes cederstroemi: diapausing eggs survive passage through the gut. Freshwater Biology 43: 579–589.

    Article  Google Scholar 

  • Karabanov, D. P., E. I. Bekker, R. J. Shiel & A. A. Kotov, 2018. Invasion of a Holarctic planktonic cladoceran Daphnia galeata Sars (Crustacea: Cladocera) in the Lower Lakes of South Australia. Zootaxa 4402: 136–148.

    Article  PubMed  Google Scholar 

  • Keller, B., H. R. Bürgi, M. Sturm & P. Spaak, 2002. Ephippia and Daphnia abundances under changing trophic conditions. Verhandlungen, Internationale Vereinigung für Theoretische und Angewandte Limnologie 28: 851–855.

    Google Scholar 

  • Keller, B., J. Wolinska, C. Tellenbach & P. Spaak, 2007. Reproductive isolation keeps hybridizing Daphnia species distinct. Limnology and Oceanography 52: 984–991.

    Article  Google Scholar 

  • Kerfoot, W. C., J. A. Robbins & L. J. Weider, 1999. A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnology and Oceanography 44: 1232–1247.

    Article  Google Scholar 

  • Kleiven, O. T., P. Larsson & A. Hobaek, 1992. Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65: 197–206.

    Article  Google Scholar 

  • Lampert, W., 1987. Feeding and nutrition in Daphnia. In De Bernardi, R. & R. H. Peters (eds), Daphnia. Memorie dell’Istituto Italiano di Idrobiologia, Verbania Pallanza: 143–192.

    Google Scholar 

  • Lampert, W., 2011. Daphnia: Development of a Model Organism in Ecology and Evolution. Excellence in Ecology Series International Ecology Institute. Oldendorf/Luhe Book, Lübeck: 21.

    Google Scholar 

  • Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.

    Article  Google Scholar 

  • Lehtonen, J., M. D. Jennions & H. Kokko, 2012. The many costs of sex. Trends in Ecology and Evolution 27: 172–178.

    Article  PubMed  Google Scholar 

  • Levene, H., 1960. Robust tests for equaltiy of variances. In Olkin, I. (ed.), Contributions to Probability and Statistics. Stanford University Press, Palo Alto: 278–292.

    Google Scholar 

  • Lively, C. M. & R. S. Howard, 1994. Selection by parasites for clonal diversity and mixed mating. Philosophical Transactions - Royal Society of London, B 346: 271–281.

    Article  CAS  Google Scholar 

  • Lynch, M., 1983. Ecological genetics of Daphnia pulex. Evolution 37: 358–374.

    Article  PubMed  Google Scholar 

  • Lynch, M., 1984. The limits to life history evolution in Daphnia. Evolution 38: 465–482.

    Article  PubMed  Google Scholar 

  • Miner, B. E., L. De Meester, M. E. Pfrender, W. Lampert & N. G. Hairston, 2012. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences 279: 1873–1882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Möst, M., A. C. Chiaia-Hernandez, M. P. Frey, J. Hollender & P. Spaak, 2015. A mixture of environmental organic contaminants in lake sediments affects hatching from Daphnia resting eggs. Environmental Toxicology and Chemistry 34: 338–345.

    Article  CAS  PubMed  Google Scholar 

  • Pijanowska, J. & G. Stolpe, 1996. Summer diapause in Daphnia as a reaction to the presence of fish. Journal of Plankton Research 18: 1407–1412.

    Article  Google Scholar 

  • R Core Team, 2017. R: a language and environment for statistical computing. R Foundation for statisical computing. Vienna, Austria, [available on internet at https://www.r-project.org/].

  • Rellstab, C., B. Keller, S. Girardclos, F. S. Anselmetti & P. Spaak, 2011. Anthropogenic eutrophication shapes the past and present taxonomic composition of hybridizing Daphnia in unproductive lakes. Limnology and Oceanography 56: 292–302.

    Article  CAS  Google Scholar 

  • Roulin, A. C., J. Routtu, M. D. Hall, T. Janicke, I. Colson, C. R. Haag & D. Ebert, 2013. Local adaptation of sex induction in a facultative sexual crustacean: insights from QTL map** and natural populations of Daphnia magna. Molecular Ecology 22: 3567–3579.

    Article  CAS  PubMed  Google Scholar 

  • Roulin, A. C., Y. Bourgeois, U. Stiefel, J. C. Walser & D. Ebert, 2016. A photoreceptor contributes to the natural variation of diapause induction in Daphnia manga. Molecular Biology and Evolution 33: 3194–3204.

    Article  CAS  PubMed  Google Scholar 

  • Schurko, A. M., J. M. Logsdon & B. D. Eads, 2009. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evolutionary Biology 9: 1–27.

    Article  CAS  Google Scholar 

  • Shapiro, S. S. & M. B. Wilk, 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.

    Article  Google Scholar 

  • Sibly, R. M., T. D. Williams & M. B. Jones, 2000. How environmental stress affects density dependence and carrying capacity in a marine copepod. Journal of Applied Ecology 37: 388–397.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Sommer, U., R. Adrian, L. D. S. Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, M. Wolf, E. Van Donk, M. Winder, U. Sommer, R. Adrian, L. D. S. Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. Van Donk & M. Winder, 2012. Beyond the plankton ecology group (PEG) model: mechanisms diriving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.

    Article  Google Scholar 

  • Soper, D. M., K. C. King, D. Vergara & C. M. Lively, 2014. Exposure to parasites increases promiscuity in a freshwater snail. Biology Letters 10: 3–6.

    Article  Google Scholar 

  • Spaak, P., 1995. Sexual reproduction in Daphnia: interspecific differences in a hybrid species complex. Oecologia 104: 501–507.

    Article  PubMed  Google Scholar 

  • Spitze, K., 1991. Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution 45: 82–92.

    Article  PubMed  Google Scholar 

  • Stearns, S. C., 1989. Evolution in life-history. Functional Ecology 3: 259–268.

    Article  Google Scholar 

  • Stross, R. G. & J. C. Hill, 1965. Diapause induction in Daphnia requires two stimuli. Science 150: 1462–1464.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, D. J. & P. D. N. Hebert, 1993. Cryptic intercontinental hybridization in Daphnia (Crustacea): the ghost of introductions past. Proceedings of the Royal Society B: Biological Sciences 254: 163–168.

    Article  Google Scholar 

  • Walsh, M. R., 2013. The link between environmental variation and evolutionary shifts in dormancy in zooplankton. Integrative and Comparative Biology 53: 713–722.

    Article  PubMed  Google Scholar 

  • Woltereck, R., 1911. Aus dem Zoolog. Institut Leipzig und der Biolog. Station Lunz (XI. Beitrag). Über Veränderung der Sexualität bei Daphniden. Experimentelle Untersuchungen über die Ursachen der Geschlechtsbestimmung. Internationale Revue der gesamten Hydrobiologie und Hydrographie 4: 91–128.

    Article  Google Scholar 

  • Zaffagnini, F., 1987. Reproduction in Daphnia. Memorie dell’Istituto Italiano di Idrobiologia 45: 245–284.

    Google Scholar 

Download references

Acknowledgements

We thank Christine Dambone and Esther Keller for support in Daphnia and algae culturing, and Nelson Stevens and Robert Dünner for statistical help. This manuscript was improved by the valuable input of two anonymous reviewers. This work was supported in part by the grant “SeeWandel: Life in Lake Constance - the past, present and future” within the framework of the Interreg V programme “Alpenrhein-Bodensee-Hochrhein (Germany/Austria/Switzerland/Liechtenstein)” which funds are provided by the European Regional Development Fund as well as the Swiss Confederation and cantons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Haltiner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology III

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haltiner, L., Hänggi, C., Spaak, P. et al. Sex in crowded places: population density regulates reproductive strategy. Hydrobiologia 847, 1727–1738 (2020). https://doi.org/10.1007/s10750-019-04143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04143-7

Keywords

Navigation