Log in

Short-term colonization dynamics of macroinvertebrates in restored channelized streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macroinvertebrate colonization of restored rivers is a function of dispersal into the restored reach and its suitability for population establishment. To maximize potential for colonization success, spatial considerations such as distance to colonizer source pools and dispersal pathways must be included in restoration planning. Unfortunately, the dispersal abilities of macroinvertebrates and ecological importance of different dispersal modes for colonization are still poorly understood. We used a field experiment that controlled colonization by passive drift and allowed distinction between active upstream aquatic and active/passive aerial dispersal, thus testing their differential importance during colonization of experimentally restored stream reaches. Two agricultural streams emanating below culverts were longitudinally separated along the first 30 m and one stream side each was covered with a fine-mesh net to limit aerial dispersal. Colonization of manually disturbed background and experimentally introduced cobble substrate was investigated over 6 months. We found that upstream in-stream dispersal, especially in these agricultural streams, can be rapid (days) and play an important role in the short-term colonization of restored streams. We conclude that a landscape perspective, in addition to in-stream measures, must be considered when attempting to restore streams dominated by agricultural and urban land use that constrains available species pools and limits dispersal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics 35: 257–284.

    Article  Google Scholar 

  • Alp, M., L. Indermaur & C. T. Robinson, 2013. Environmental constraints on oviposition of aquatic invertebrates with contrasting life cycles in two human-modified streams. Freshwater Biology 58: 1932–1945.

    Article  Google Scholar 

  • Baumgartner, S. & C. T. Robinson, 2015. Land-use legacy and the differential response of stream macroinvertebrates to multiple stressors studied using in situ experimental mesocosms. Freshwater Biology 60: 1622–1634.

    Article  CAS  Google Scholar 

  • Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.

    Article  Google Scholar 

  • Briers, R. A., J. H. R. Gee, H. M. Cariss & R. Geoghegan, 2004. Inter-population dispersal by adult stoneflies detected by stable isotope enrichment. Freshwater Biology 49: 425–431.

    Article  Google Scholar 

  • Burdon, F. J., A. R. McIntosh & J. S. Harding, 2013. Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. Ecological Applications 23: 1036–1047.

    Article  PubMed  Google Scholar 

  • Buss, D. F., D. F. Baptista, J. L. Nessimian & M. Egler, 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518: 179–188.

    Article  Google Scholar 

  • Dedecker, A. P., P. L. M. Goethals, T. D’Heygere & N. De Pauw, 2006. Development of an in-stream migration model for Gammarus pulex L. (Crustacea, Amphipoda) as a tool in river restoration management. Aquatic Ecology 40: 249–261.

    Article  Google Scholar 

  • Didham, R. K., T. J. Blakely, R. M. Ewers, T. R. Hitchings, J. B. Ward & M. J. Winterbourn, 2012. Horizontal and vertical structuring in the dispersal of adult aquatic insects in a fragmented landscape. Fundamental and Applied Limnology 180: 27–40.

    Article  Google Scholar 

  • Downes, B. J. & J. Lancaster, 2010. Does dispersal control population densities in advection-dominated systems? A fresh look at critical assumptions and a direct test. Journal of Animal Ecology 79: 235–248.

    Article  PubMed  Google Scholar 

  • Downes, B. J., A. Bellgrove & J. L. Street, 2005. Drifting or walking? Colonisation routes used by different instars and species of lotic, macroinvertebrate filter feeders. Marine and Freshwater Research 56: 815–824.

    Article  Google Scholar 

  • Elliott, J. M., 2003. A comparative study of the dispersal of 10 species of stream invertebrates. Freshwater Biology 48: 1652–1668.

    Article  Google Scholar 

  • Feld, C. K., S. Birk, D. C. Bradley, D. Hering, J. Kail, A. Marzin, A. Melcher, D. Nemitz, M. L. Pedersen, F. Pletterbauer, D. Pont, P. F. M. Verdonschot & N. Friberg, 2011. From natural to degraded rivers and back again: a test of restoration ecology theory and practice. In Woodward, G. (ed.), Advances in Ecological Research, Vol. 44. Academic, San Diego: 119–209.

    Google Scholar 

  • Felten, V., G. Tixier, F. Guerold, V. D. C. De Billy & O. Dangles, 2008. Quantification of diet variability in a stream amphipod: implications for ecosystem functioning. Fundamental and Applied Limnology 170: 303–313.

    Article  Google Scholar 

  • Friberg, N., B. Kronvang, L. M. Svendsen, H. O. Hansen & M. B. Nielsen, 1994. Restoration of channelized reach of the River Gelsa, Denmark. Aquatic Conservation: Marine and Freshwater Ecosystems 4: 289–297.

    Article  Google Scholar 

  • Haase, P., D. Hering, S. C. Jähnig, A. W. Lorenz & A. Sundermann, 2013. The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 704: 475–488.

    Article  Google Scholar 

  • Herringshaw, C. J., T. W. Stewart, J. R. Thompson & P. F. Anderson, 2011. Land use, stream habitat and benthic invertebrate assemblages in a highly altered Iowa watershed. American Midland Naturalist 165: 274–293.

    Article  Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Hughes, J. M., 2007. Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biology 52: 616–631.

    Article  Google Scholar 

  • Jähnig, S. C. & A. W. Lorenz, 2008. Substrate-specific macroinvertebrate diversity patterns following stream restoration. Aquatic Sciences 70: 292–303.

    Article  Google Scholar 

  • Jähnig, S. C., A. W. Lorenz & D. Hering, 2009. Re-meandering German lowland streams: qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates. Environmental Management 44: 745–754.

    Article  PubMed  Google Scholar 

  • Jähnig, S. C., K. Brabec, A. Buffagni, S. Erba, A. W. Lorenz, T. Ofenbock, P. F. M. Verdonschot & D. Hering, 2010. A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. Journal of Applied Ecology 47: 671–680.

    Article  Google Scholar 

  • Kelly, D. W. & J. T. A. Dick, 2005. Effects of environment and an introduced invertebrate species on the structure of benthic macroinvertebrate species at the catchment level. Archiv Fur Hydrobiologie 164: 69–88.

    Article  Google Scholar 

  • Kelly, D. W., J. T. A. Dick & W. I. Montgomery, 2002. The functional role of Gammarus (Crustacea, Amphipoda): shredders, predators, or both? Hydrobiologia 485: 199–203.

    Article  Google Scholar 

  • Kovats, Z. E., J. J. H. Ciborowski & L. D. Corkum, 1996. Inland dispersal of adult aquatic insects. Freshwater Biology 36: 265–276.

    Article  Google Scholar 

  • Kristensen, E. A., A. Baattrup-Pedersen & H. Thodsen, 2011. An evaluation of restoration practises in lowland streams: Has the physical integrity been re-created? Ecological Engineering 37: 1654–1660.

    Article  Google Scholar 

  • Lake, P. S., N. Bond & P. Reich, 2007. Linking ecological theory with stream restoration. Freshwater Biology 52: 597–615.

    Article  Google Scholar 

  • Lancaster, J. & B. J. Downes, 2014. Maternal behaviours may explain riffle-scale variations in some stream insect populations. Freshwater Biology 59: 502–513.

    Article  Google Scholar 

  • Lancaster, J., B. J. Downes & A. Arnold, 2010. Environmental constraints on oviposition limit egg supply of a stream insect at multiple scales. Oecologia 163: 373–384.

    Article  PubMed  Google Scholar 

  • Langford, T. E. L., P. J. Shawa, A. J. D. Fergusin & S. R. Howard, 2009. Long-term recovery of macroinvertebrate biota in grossly polluted streams: recolonization as a constraint to ecological quality. Ecological Indicators 9: 1064–1077.

    Article  CAS  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Logan, P. & M. P. Brooker, 1983. The macroinvertebrate faunas of riffles and pools. Water Research 17: 263–270.

    Article  Google Scholar 

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates – a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.

    Article  Google Scholar 

  • Macneale, K. H., B. L. Peckarsky & G. E. Likens, 2005. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshwater Biology 50: 1117–1130.

    Article  Google Scholar 

  • Masters, Z., I. Peteresen, A. G. Hildrew & S. J. Ormerod, 2007. Insect dispersal does not limit the biological recovery of streams from acidification. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 375–383.

    Article  Google Scholar 

  • Matthaei, C. D., U. Uehlinger, E. I. Meyer & A. Frutiger, 1996. Recolonization by benthic invertebrates after experimental disturbance in a Swiss prealpine river. Freshwater Biology 35: 233–248.

    Article  Google Scholar 

  • Merz, J. E. & L. K. O. Chan, 2005. Effects of gravel augmentation on macroinvertebrate assemblages in a regulated California river. River Research and Applications 21: 61–74.

    Article  Google Scholar 

  • Milner, V. S. & D. J. Gilvear, 2012. Characterization of hydraulic habitat and retention across different channel types; introducing a new field-based technique. Hydrobiologia 694: 219–233.

    Article  Google Scholar 

  • Minshall, G. W. & J. N. Minshall, 1977. Microdistribution of benthic invertebrates in a Rocky-Mountain (USA) stream. Hydrobiologia 55: 231–249.

    Article  Google Scholar 

  • Mueller, M., J. Pander & J. Geist, 2014. The ecological value of stream restoration measures: an evaluation on ecosystem and target species scales. Ecological Engineering 62: 129–139.

    Article  Google Scholar 

  • Muotka, T. & P. Laasonen, 2002. Ecosystem recovery in restored headwater streams: the role of enhanced leaf retention. Journal of Applied Ecology 39: 145–156.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens & H. Wagner, 2013. Vegan: Community Ecology Package. R Package Version 2.0-7 [available on internet at http://CRAN.R-project.org/package=vegan].

  • Palmer, M. A., R. F. Ambrose & N. L. Poff, 1997. Ecological theory and community restoration ecology. Restoration Ecology 5: 291–300.

    Article  Google Scholar 

  • Palmer, M. A., H. L. Menniger & E. Bermhardt, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.

    Article  Google Scholar 

  • Parkyn, S. M. & B. J. Smith, 2011. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration. Environmental Management 48: 602–614.

    Article  PubMed  Google Scholar 

  • Petersen, I., Z. Masters, A. G. Hildrew & S. J. Ormerod, 2004. Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology 41: 934–950.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Pretty, J. L. & M. Dobson, 2004. The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams. Hydrology and Earth System Sciences 8: 550–559.

    Article  Google Scholar 

  • R Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 [available on internet at http://www.R-project.org/].

  • Robinson, C. T., 2012. Long-term changes in community assembly, resistance, and resilience following experimental floods. Ecological Applications 22: 1949–1961.

    Article  PubMed  Google Scholar 

  • Robinson, C. T. & U. Uehlinger, 2008. Experimental floods cause ecosystem regime shift in a regulated river. Ecological Applications 18: 511–526.

    Article  PubMed  Google Scholar 

  • Robinson, C. T., N. Schuwirth, S. Baumgartner & C. Stamm, 2014. Spatial relationships between land use, habitat, water quality and lotic macroinvertebrates in two Swiss catchments. Aquatic Sciences 76: 375–392.

    Article  CAS  Google Scholar 

  • Southwood, T. R. E. & P. A. Henderson, 2000. Ecological Methods, 3rd ed. Blackwell Science Ltd., Oxford.

    Google Scholar 

  • Suding, K. N., 2011. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. In Futuyma, D. J., H. B. Shaffer & D. Simberloff (eds), Annual Review of Ecology, Evolution, and Systematics, Vol. 42. Annual Reviews, Palo Alto: 465–487.

    Google Scholar 

  • Sundermann, A., C. Antons, N. Cron, A. W. Lorenz, D. Hering & P. Haase, 2011. Hydromorphological restoration of running waters: effects on benthic invertebrate assemblages. Freshwater Biology 56: 1689–1702.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douces. CNRS Editions, Paris.

    Google Scholar 

  • Townsend, C. R., M. R. Scarsbrook & S. Doledec, 1997. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography 42: 938–949.

    Article  Google Scholar 

  • Waringer, J. & W. Graf, 2010. Atlas of Central European Trichoptera Larvae. Erik Mauch Verlag, Dinkelscherben.

    Google Scholar 

  • Winking, C., A. W. Lorenz, B. Sures & D. Hering, 2014. Recolonization patterns of benthic invertebrates: a field investigation of restored former sewage channels. Freshwater Biology 59: 1932–1944.

    Article  Google Scholar 

  • Wohl, E., P. L. Angermeier, B. Bledsoe, G. M. Kondolf, L. MacDonnell, D. M. Merritt, M. A. Palmer, N. L. Poff & D. Tarboton, 2005. River restoration. Water Resources Research 41: W10301.

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Swiss Federal Institute of Environment (FEON). We thank S. Blaser for assistance in the field and her extensive work on sample processing. K. Kraehenbuehl, S. Kaeser, C. Thompson, M. Baumgartner, and M. Kradolfer helped with installing the experiment and field work. Three anonymous reviewers provided constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Robinson.

Additional information

Handling editor: Marcello Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, S.D., Robinson, C.T. Short-term colonization dynamics of macroinvertebrates in restored channelized streams. Hydrobiologia 784, 321–335 (2017). https://doi.org/10.1007/s10750-016-2886-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2886-4

Keywords

Navigation