Log in

Impacts of terrestrial habitat transformation on temporary wetland invertebrates in a sclerophyllous Sand fynbos landscape

  • MEDITERRANEAN TEMPORARY PONDS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

There has been recent debate about the extent to which human disturbance of the landscape affects wetland invertebrates given that the organisms are already adapted to high levels of natural disturbance. Using repeated sampling of a set of 12 temporary wetlands occurring in a differentially transformed Sand fynbos landscape in Cape Town (South Africa), we investigated patterns of macroinvertebrate and microcrustacean assemblage composition, richness and diversity in relation to a physico-chemical gradient resulting from variable habitat loss in the adjacent landscape. Both macroinvertebrates and microcrustaceans showed clear gradational changes in assemblage composition in relation to the surrounding cover of indigenous vegetation (as a proxy for habitat loss). Although the composition of assemblages appeared to be affected by this gradient of habitat transformation, no relationships were detected using various measures of taxon richness and diversity. At the small spatial scale for which patterns are analysed, the influence of natural variation on invertebrate assemblages appears to have been overridden by that resulting from habitat transformation in the adjacent landscape. Depression wetlands embedded in Sand fynbos habitat appear to be unique in terms of their physico-chemistry (acidic and rich in humic substances) and the invertebrate assemblages they support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allanson, R., R. C. Hart, J. H. O’Keeffe & R. D. Robarts, 1990. Inland Waters of Southern Africa: An Ecological Perspective. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: GUIDE to Software and Statistical Methods. PRIMER-E, Plymouth.

    Google Scholar 

  • Angeler, D. G. & M. Alvarez-Cobelas, 2005. Island biogeography and landscape structure: integrating ecological concepts in a landscape perspective of anthropogenic impacts in temporary wetlands. Environmental Pollution 138: 420–424.

    Article  CAS  PubMed  Google Scholar 

  • Bagella, S., S. Gascόn, M. C. Caria, J. Sala, M. A. Mariani & D. Boix, 2010. Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds. Biodiversity and Conservation 19: 1749–1768.

    Article  Google Scholar 

  • Barbour, M. T. & J. Gerritsen, 1996. Subsampling of benthic samples: a defense of the fixed-count method. Journal of the North American Benthological Society 15(3): 386–391.

    Article  Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Report no. EPA 841-0B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

  • Battle, J. & S. W. Golladay, 2001. Water quality and macroinvertebrate assemblages in three types of seasonally inundated limesink wetlands in Southwest Georgia. Journal of Freshwater Ecology 16(2): 189–207.

    Article  CAS  Google Scholar 

  • Batzer, D. P., 2013. The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33: 1–15.

    Article  Google Scholar 

  • Batzer, D. P. & A. Ruhí, 2013. Is there a core set of organisms that structure macroinvertebrate assemblages in freshwater wetlands? Freshwater Biology 58(8): 1647–1659.

    Article  Google Scholar 

  • Batzer, D. P., B. J. Palik & R. Buech, 2004. Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23(1): 50–68.

    Article  Google Scholar 

  • Batzer, D. P., R. Cooper & S. A. Wissinger, 2006. Wetland animal ecology. In Batzer, D. P. & R. R. Sharitz (eds), Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley: 242–284.

    Google Scholar 

  • Bilton, D. T., L. C. McAbendroth, P. Nicolet, A. Bedford, S. D. Rundle, A. Foggo & P. M. Ramsay, 2009. Ecology and conservation status of temporary and fluctuating ponds in two areas of southern England. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 134–146.

    Article  Google Scholar 

  • Bird, M. S. & J. A. Day, 2014. Wetlands in Changed Landscapes: the Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands. PLoS ONE 9(2): e88935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird, M., J. Day & A. Rebelo, 2013a. Physico-chemical impacts of terrestrial alien vegetation on temporary wetlands in a sclerophyllous Sand fynbos ecosystem. Hydrobiologia 711: 115–128.

    Article  CAS  Google Scholar 

  • Bird, M. S., M. C. Mlambo & J. A. Day, 2013b. Macroinvertebrates as unreliable indicators of human disturbance in temporary depression wetlands of the south-western Cape, South Africa. Hydrobiologia 720: 19–37.

    Article  Google Scholar 

  • Bird, M. S., J. A. Day & H. L. Malan, 2014. The influence of biotope on invertebrate assemblages in lentic environments: a study of two perennial alkaline wetlands in the Western Cape, South Africa. Limnologica – Ecology and Management of Inland Waters 48: 16–27.

    Article  Google Scholar 

  • Bowd, R., D. C. Kotze, C. D. Morris & N. W. Quinn, 2006. Towards the development of a macroinvertebrate sampling technique for palustrine wetlands in South Africa: a pilot investigation in the KwaZulu-Natal midlands. African Journal of Aquatic Science 31(1): 15–23.

    Article  Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E: Plymouth Marine Laboratory, Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E: Plymouth Marine Laboratory, Plymouth.

    Google Scholar 

  • Clarke, K. R., P. J. Somerfield & M. G. Chapman, 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330: 55–80.

    Article  Google Scholar 

  • Comín, F. A. & W. D. Williams, 1994. Parched continents: our common future? In Margalef, R. (ed.), Limnology Now: A Paradigm of Planetary Problems. Elsevier, Amsterdam: 473–527.

    Google Scholar 

  • Culler, L. E., R. F. Smith & W. O. Lamp, 2014. Weak relationships between environmental factors and invertebrate communities in constructed wetlands. Wetlands 34: 351–361.

    Article  Google Scholar 

  • Day, J. A. & I. J. de Moor (eds), 2002a. Guides to the Freshwater Invertebrates of Southern Africa: Volume 5 Non-Arthropods – The Protozoans, Porifera, Cnidaria, Platyhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta and Hirudinea. WRC Report no. TT 167/02, Water Research Commission, Pretoria.

  • Day, J. A. & I. J. de Moor (eds), 2002b. Guides to the Freshwater Invertebrates of Southern Africa: Volume 6 Arachnida and Mollusca – Araneae, water mites and Mollusca. WRC Report no. TT 182/02, Water Research Commission, Pretoria.

  • Day, J. A., B. A. Stewart, I. J. de Moor & A. E. Louw (eds), 1999. Guides to the Freshwater Invertebrates of Southern Africa: Volume 2 Crustacea I – Notostraca, Anostraca, Conchostraca and Cladocera. WRC Report no. TT 121/00, Water Research Commission, Pretoria.

  • Day, J. A., I. J. de Moor, B. A. Stewart & A. E. Louw (eds), 2001a. Guides to the Freshwater Invertebrates of Southern Africa: Volume 3 Crustacea II – Ostracoda, Copepoda and Branchiura. WRC Report no. TT 148/01, Water Research Commission, Pretoria.

  • Day, J. A., B. A. Stewart, I. J. de Moor & A. E. Louw (eds), 2001b. Guides to the Freshwater Invertebrates of Southern Africa: Volume 4 Crustacea III – Bathynellacea, Amphipoda, Isopoda, Spelaeogriphea, Tanaidacea and Decapoda. WRC Report no. TT 141/01, Water Research Commission, Pretoria.

  • Day, J. A., A. D. Harrison & I. J. de Moor (eds), 2003. Guides to the Freshwater Invertebrates of Southern Africa: Volume 9 Diptera. WRC Report no. TT 201/02, Water Research Commission, Pretoria.

  • de Moor, I. J., J. A. Day & F. C. de Moor (eds), 2003a. Guides to the Freshwater Invertebrates of Southern Africa: Volume 7 Insecta I –Ephemeroptera, Odonata and Plecoptera. WRC Report no. TT 207/03, Water Research Commission, Pretoria.

  • de Moor, I. J., J. A. Day & F. C. de Moor (eds), 2003b. Guides to the Freshwater Invertebrates of Southern Africa: Volume 8 Insecta II – Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera. WRC Report no. TT 214/03, Water Research Commission, Pretoria.

  • Eitam, A., L. Blaustein, K. Van Damme, H. J. Dumont & K. Martens, 2004. Crustacean species richness in temporary pools: relationships with habitat traits. Hydrobiologia 525: 125–130.

    Article  Google Scholar 

  • Euliss, N. H. & D. M. Mushet, 1999. Influence of agriculture on aquatic invertebrate communities of temporary wetlands in the prairie pothole region of North Dakota, USA. Wetlands 19(2): 578–583.

    Article  Google Scholar 

  • Ganguly, S. S. & L. A. Smock, 2010. Spatial and temporal variability of invertebrate communities in vernal pools on the coastal plain of Virginia. Journal of Freshwater Ecology 25(3): 413–420.

    Article  Google Scholar 

  • Gardiner, A. J. C., 1988. A study on the water chemistry and plankton in blackwater lakelets of the south-western Cape. PhD Thesis, Zoology Department, University of Cape Town.

  • Gehrke, B., A. Tshiila, M. Muasya, M. Beukes & F. Barros, 2011. Sedge diversity at Youngsfield Military Base. Veld & Flora 97: 32–33.

    Google Scholar 

  • Gernes, M. C. & J. C. Helgen, 2002. Indexes of Biological Integrity (IBI) for large depressional wetlands in Minnesota. Minnesota Pollution Control Agency, St. Paul, MN.

    Google Scholar 

  • Gibbs, J. P., 1993. Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands 13(1): 25–31.

    Article  Google Scholar 

  • Gittins, R., 1985. Canonical Analysis. A Review with Applications in Ecology. Springer-Verlag, Berlin,

    Book  Google Scholar 

  • Gómez-Rodríguez, C., C. Díaz-Paniagua, L. Serrano, M. Florencio & A. Portheault, 2009. Mediterranean temporary ponds as amphibian breeding habitats: the importance of preserving pond network. Aquatic Ecology 43: 1179–1191.

    Article  Google Scholar 

  • Harrison, A. D., 1962. Hydrobiological studies on alkaline and acid stillwaters in the Western Cape Province. Transactions of the Royal Society of South Africa 36(4): 213–235.

    Article  Google Scholar 

  • Heijnis, C., A. T. Lombard, R. M. Cowling & P. G. Desmet, 1999. Picking up pieces: a biosphere reserve for a fragmented landscape – the Coastal Lowlands of the Western Cape, South Africa. Biodiversity and Conservation 8: 471–496.

    Article  Google Scholar 

  • Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6(2): 65–70.

    Google Scholar 

  • Holmes, P., 2008. Optimal ground preparation treatments for restoring lowland Sand Fynbos vegetation on old fields. South African Journal of Botany 74(1): 33–40.

    Article  Google Scholar 

  • Imhoff, M. L., L. Bounoua, R. DeFries, W. T. Lawrence, D. Stutzer, C. J. Tucker & T. Ricketts, 2004. The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing of Environment 89(4): 434–443.

    Article  Google Scholar 

  • King, R. S. & C. J. Richardson, 2002. Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. Journal of the North American Benthological Society 21(1): 150–171.

    Article  Google Scholar 

  • Lahr, J., A. O. Diallo, B. Gadji, P. S. Diouf, J. J. M. Bedaux, A. Badji, K. B. Ndour, J. E. Andreasen & N. M. Van Straalen, 2000. Ecological effects of experimental insecticide applications on invertebrates in Sahelian temporary ponds. Environmental Toxicology and Chemistry 19(5): 1278–1289.

    Article  CAS  Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecological Monographs 69: 1–24.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mahoney, D. L., M. A. Mort & B. E. Taylor, 1990. Species richness of Calanoid Copepods, Cladocerans and other Branchiopods in Carolina Bay temporary ponds. American Midland Naturalist 123(2): 244–258.

    Article  Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Article  Google Scholar 

  • McCallum, I. D., 1979. A simple method of taking a subsample of zooplankton. New Zealand Journal of Marine and Freshwater Research 13(4): 559–560.

    Article  Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III & P. S. Rawlik, 2004. Changes in macroinvertebrate community structure and function along a phosphorus gradient in the Florida Everglades. Hydrobiologia 529(1–3): 113–132.

    Article  Google Scholar 

  • Nicolet, P., 2001. Temporary ponds in the UK: a critical biodiversity resource for freshwater plants and animals. Freshwater Forum 17: 16–25.

    Google Scholar 

  • Ollis, D., J. Ewart-Smith, J. Day, N. Job, D. Macfarlane, C. Snaddon, E. Sieben, J. Dini & N. Mbona, 2015. The development of a classification system for inland aquatic ecosystems in South Africa. Water SA 41(5): 727–745.

    Article  Google Scholar 

  • Porst, G. & K. Irvine, 2009. Distinctiveness of macroinvertebrate communities in turloughs (temporary ponds) and their response to environmental variables. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 456–465.

    Article  Google Scholar 

  • Rebelo, A. G., C. Coucher, N. Helme, L. Mucina & M. C. Rutherford, 2006. Fynbos Biome. In Mucina, L. & M. C. Rutherford (eds), The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria: 53–219.

    Google Scholar 

  • Richardson, D. M. & B. W. van Wilgen, 2004. Invasive alien plants in South Africa: how well do we understand the ecological impacts? South African Journal of Science 100: 45–52.

    Google Scholar 

  • Rouget, M., D. M. Richardson, R. M. Cowling, J. W. Lloyd & A. T. Lombard, 2003. Current patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region, South Africa. Biological Conservation 112: 63–85.

    Article  Google Scholar 

  • Rundle, S. D., D. T. Bilton, A. Foggo & V. Choisel, 2002. Are distribution patterns linked to dispersal mechanism? An investigation using pond invertebrate assemblages. Freshwater Biology 47: 1571–1581.

    Article  Google Scholar 

  • Semlitsch, R. D. & J. R. Bodie, 1998. Are small, isolated wetlands expendable? Conservation Biology 12: 1129–1133.

    Article  Google Scholar 

  • Silberbauer, M. J. & J. M. King, 1991. The distribution of wetlands in the South-Western Cape Province, South Africa. South African Journal of Aquatic Science 17: 65–81.

    Article  Google Scholar 

  • Somers, K. M., R. A. Reid & S. M. David, 1998. Rapid biological assessments: how many animals are enough? Journal of the North American Benthological Society 17(3): 348–358.

    Article  Google Scholar 

  • Spencer, M., S. S. Schwartz & L. Blaustein, 2002. Are there fine-scale spatial patterns in community similarity among temporary freshwater pools? Global Ecology and Biogeography 11: 71–78.

    Article  Google Scholar 

  • Stals, R. & I. J. de Moor (eds), 2007. Guides to the Freshwater Invertebrates of Southern Africa: Volume 10 - Coleoptera. WRC Report no. TT 320/07, Water Research Commission, Pretoria.

  • Studinski, J. M. & S. A. Grubbs, 2007. Environmental factors affecting the distribution of aquatic invertebrates in temporary ponds in Mammoth Cave National Park, Kentucky, USA. Hydrobiologia 575: 211–220.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO for Windows Version 4.5. Biometrics – Plant Research International, Wageningen.

  • Theoharides, K. A. & J. S. Dukes, 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist 176(2): 256–273.

    Article  PubMed  Google Scholar 

  • Vanschoenwinkel, B., C. De Vries, M. Seaman & L. Brendonck, 2007. The role of metacommunity processes in sha** invertebrate rock pool communities along a dispersal gradient. Oikos 116: 1255–1266.

    Article  Google Scholar 

  • Vicente, J., H. Pereira, C. Randin, J. Goncalves, A. Lomba, P. Alves, J. Metzger, M. Cezar, A. Guisan & J. Honrado, 2014. Environment and dispersal paths override life strategies and residence time in determining regional patterns of invasion by alien plants. Perspectives in Plant Ecology, Evolution and Systematics 16(1): 1–10.

    Article  Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 1996. Effects of sampling area and subsampling procedure on comparisons of taxa richness among streams. Journal of the North American Benthological Society 15(3): 392–399.

    Article  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277(5325): 494–499.

    Article  CAS  Google Scholar 

  • Wackernagel, M. & J. D. Yount, 1998. The ecological footprint: an indicator of progress toward regional sustainability. Environmental Monitoring and Assessment 51(1–2): 511–529.

    Article  Google Scholar 

  • Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.

    Article  CAS  Google Scholar 

  • Williams, D. D., 2006. The biology of temporary waters. Oxford University Press, Oxford.

    Google Scholar 

  • Williams, P., J. Biggs, G. Fox, P. Nicolet & M. Whitfield, 2001. History, origins and importance of temporary ponds. Freshwater Forum 17: 7–15.

    Google Scholar 

  • Winter, M., I. Kühn, F. A. La Sorte, O. Schweiger, W. Nentwig & S. Klotz, 2010. The role of non-native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Global Ecology and Biogeography 19(3): 332–342.

    Article  Google Scholar 

  • Wissinger, S. A., A. J. Bohonak, H. H. Whiteman & W. S. Brown, 1999. Subalpine wetlands in Colorado: habitat permanence, salamander predation and invertebrate communities. In Wissinger, S. A. (ed.), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. Wiley, New York: 757–790.

    Google Scholar 

  • Woodcock, T., J. Longcore, D. McAuley, T. Mingo, C. R. Bennatti & K. Stromborg, 2005. The role of pH in structuring communities of Maine wetland macrophytes and chironomid larvae (Diptera). Wetlands 25(2): 306–316.

    Article  Google Scholar 

Download references

Acknowledgments

For fieldwork assistance, we wish to thank Dr Jeremy Shelton and for help with processing invertebrate samples in the laboratory we thank Alanna Rebelo. M. Bird would like to thank the Water Research Commission and the National Research Foundation for PhD bursaries which funded this work. Permits for sampling the wetlands inside KRCA and at Youngsfield Military Base were provided by the Reserve Manager at KRCA, Ms Maya Beukes. For specialist expertise in identifying certain invertebrate taxa, we wish to thank Prof. M. Hamer, UKZN, (Anostraca); Prof. C.C. Appleton, UKZN, (Mollusca); Mr P. Reavell, Stellenbosch University, (Hemiptera and Coleoptera); Prof. M. Coetzee, Wits University, (Culicidae); Dr D. Perkins, Harvard University, USA, (Hydraenidae); Mr P. Simaka and Prof. M. Samways, Stellenbosch University, (Odonata); Prof. C. Griffiths, UCT, (Amphipoda); Dr E. Ueckerman, ARC, Pretoria, and Dr R. Gerecke, Tubingen, Germany, (Hydracarina), Mrs B Day, UCT (Chironomidae) and Dr Z Gidό, University of Debrecen, Hungary (Ostracoda). Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the National Research Foundation does not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Bird.

Additional information

Guest editors: Simonetta Bagella, Dani Boix, Rossella Filigheddu, Stéphanie Gascón, Annalena Cogoni / Mediterranean Temporary Ponds

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bird, M.S., Day, J.A. Impacts of terrestrial habitat transformation on temporary wetland invertebrates in a sclerophyllous Sand fynbos landscape. Hydrobiologia 782, 169–185 (2016). https://doi.org/10.1007/s10750-016-2804-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2804-9

Keywords

Navigation