Log in

Plant-growth promoting rhizobacteria Azospirillum partially alleviate pesticide-induced growth retardation and oxidative stress in wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Currently, in agriculture, there is a tendency towards the partial replacement of chemical pesticides with microbiological plant protection products. In this work, we tested the ability of plant-growth promoting bacteria from the genus Azospirillum to reduce the negative effects of high concentrations of six different pesticides on wheat characteristics. Of the seven Azospirillum strains studied, five showed high resistance to at least one pesticide, and Niveispirillum irakense (formerly classified as Azospirillum until 2014) was one of the most resistant strains to all pesticides. In most cases, catalase activity increased in resistant strains in the presence of pesticides. Furthermore, we demonstrated that some of the most resistant Azospirillum strains (including N. irakense, A. brasilense, A. picis, A. thiophilum, and A. baldaniorum) can counteract pesticide-induced growth inhibition, suppress oxidative stress, as evidenced by a decrease in iron-induced chemiluminescence and the amount of oxidative damage to wheat seedling mtDNA in a pot experiment. However, the bacteria had no positive effect on the chlorophyll content of wheat seedlings. Azospirilla were found in the rhizosphere of wheat roots 3 months after a wheat planting in the field experiment. Pesticides led to a slight decrease in their quantity in the rhizosphere. Additionally, bacterial inoculation mitigated the pesticide-induced decrease in wheat biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Ahemad M, Khan MS (2011a) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology 20:661–669. https://doi.org/10.1007/s10646-011-0606-4

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011b) Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic Biochem Physiol 100:51–56. https://doi.org/10.1016/j.pestbp.2011.02.004

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012a) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. Strain MRP1. J Food Agric Environ 10(3&4):334–343.

    Google Scholar 

  • Ahemad M, Khan MS (2012b) Effects of pesticides on plant-growth-promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71. https://doi.org/10.1016/j.jssas.2011.10.001

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012c) Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531–1540. https://doi.org/10.1007/s13213-011-0407-2

    Article  CAS  Google Scholar 

  • Al-Enazi NM, Al-Tami MS, Al-homaidi E (2022) Unraveling the potential of pesticide-tolerant Pseudomonas sp. augmenting biological and physiological attributes of Vigna radiata (L.) under pesticide stress. RSC Adv 12:17765–17783. https://doi.org/10.1039/D2RA01570F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alen’kina SA, Kupryashina MA (2021) Influence of Azospirillum lectins on the antioxidant system response in wheat seedling roots during abiotic stress. Soil Research 60:197–209. https://doi.org/10.1071/SR21092

    Article  CAS  Google Scholar 

  • Alen’kina SA, Romanov NI, Nikitina VE (2018) Regulation by Azospirillum lectins of the activity of antioxidant enzymes in wheat seedling roots under short-term stresses. Brazilian J Bot 41:579–587. https://doi.org/10.1007/s40415-018-0489-1

    Article  Google Scholar 

  • Alimova AA, Sitnikov VV, Pogorelov DI, Boyko ON, Vitkalova IY, Gureev AP, Popov VN (2022) High doses of pesticides induce mtDNA damage in intact mitochondria of potato in vitro and do not impact on mtDNA integrity of mitochondria of shoots and tubers under in vivo exposure. Int J Mol Sci 23:2970. https://doi.org/10.3390/ijms23062970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayilara MS, Adeleke BS, Akinola SA, Fayose CA, Adeyemi UT, Gbadegesin LA, Babalola OO (2023) Biopesticides as a promising alternative to synthetic pesticides: a case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol 14:1040901. https://doi.org/10.3389/fmicb.2023.1040901

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakshi P, Chouhan R, Sharma P, Mir BA, Gandhi SG, Landi M, Bhardwaj R (2021) Amelioration of chlorpyrifos-induced toxicity in Brassica juncea L. by combination of 24-epibrassinolide and plant-growth-promoting rhizobacteria. Biomolecules 11:877. https://doi.org/10.3390/biom11060877.

  • Bao Y, Zhao S, Wu N, Yuan Y, Ruan L, He J (2024) Degradation of Atrazine by an anaerobic microbial consortium enriched from soil of an herbicide-manufacturing plant. Curr Microbiol 81:117

    Article  CAS  PubMed  Google Scholar 

  • Barbosa de Sousa A, Rohr P, Silveira HCS (2023) Analysis of mitochondrial DNA copy number variation in Brazilian farmers occupationally exposed to pesticides. Int J Environ Health Res 10:2280147. https://doi.org/10.1080/09603123.2023.2280147

    Article  CAS  Google Scholar 

  • Baudoin E, Couillerot O, Spaepen S, Moënne-Loccoz Y, Nazaret S (2010) Applicability of the 16S–23S rDNA internal spacer for PCR detection of the phytostimulatory PGPR inoculant Azospirillum lipoferum CRT1 in field soil. J Appl Microbiol 108:25–38. https://doi.org/10.1111/j.1365-2672.2009.04393.x

    Article  CAS  PubMed  Google Scholar 

  • Boerth DW, Eder E, Stanks JR, Wanek P, Wacker M, Gaulitz S, Yashin M (2008) DNA adducts as biomarkers for oxidative and genotoxic stress from pesticides in crop plants. J Agric Food Chem 56:6751–6760. https://doi.org/10.1021/jf072816q

    Article  CAS  PubMed  Google Scholar 

  • Boleta EHM, Shintate Galindo F, Jalal A, Santini JMK, Rodrigues WL, de Lima BH, Teixeira Filho MCM (2020) Inoculation with growth-promoting bacteria Azospirillum brasilense and its effects on productivity and nutritional accumulation of wheat cultivars. Front Sustain Food Syst 4:607262. https://doi.org/10.3389/fsufs.2020.607262

    Article  Google Scholar 

  • Bulegon LG, Guimarães VF, Klein J, Battistus AG, Inagaki AM, Offemann LC, de Souza AKP (2017) Enzymatic activity, gas exchange, and production of soybean co-inoculated with Bradyrhizobium japonicum and Azospirillum brasilense. Austr J Crop Sci 11:888–896. https://doi.org/10.21475/ajcs.17.11.07.pne575.

  • Caraway BH, Krieg NR (1974) Aerotaxis in Spirillum volutans. Can J Microbiol 20:1367–1377. https://doi.org/10.1139/m74-211

    Article  CAS  Google Scholar 

  • Chopade AR, Naikwade NS, Nalawade AY, Shinde VB, Burade KB (2007) Effects of pesticides on chlorophyll content in leaves of medicinal plants. Pollut Res 26:491–494

    CAS  Google Scholar 

  • da Silva Oliveira CE, Jalal A, Vitória LS, Giolo VM, Oliveira TJSS, Aguilar JV, de Camargos LS, Brambilla MR, Fernandes GC, Vargas PF, Zoz T, Filho MCMT (2023) Inoculation with Azospirillum brasilense strains AbV5 and AbV6 increases nutrition, chlorophyll, and leaf yield of hydroponic lettuce. Plants (basel) 12:3107

    PubMed  Google Scholar 

  • Davaran-Hagh E, Mirshekari B, Reza-Ardakani M, Farahvash F, Rejali F (2015) Azospirillum lipoferum and nitrogen fertilization effect on chlorophyll content, nutrients uptake and biometric properties of Zea mays L. Agrocien 49:889–897

    Google Scholar 

  • Dennis MT, Arnaud S, Malatesta F (1989) Hydrogen peroxide is the end of oxygen reduction by the terminal oxidase in the marin bacterium Pseudomonas palustris strain 617. FEBS Lett 247:475–479

    Article  Google Scholar 

  • El-Halfawy OM, Valvano MA (2014) Putrescine reduces antibiotic-induced oxidative stress as a mechanism of modulation of antibiotic resistance in Burkholderia cenocepacia. Antimicrob Agents Chemother 58:4162–4171

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasciglione G, Casanovas EM, Yommi A, Sueldo RJ, Barassi CA (2012) Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agric 92:2518–2523

    Article  CAS  PubMed  Google Scholar 

  • Foster LJ, Kwan BH, Vancov T (2004) Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiol Lett 240:49–53

    Article  CAS  PubMed  Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Galindo FS, Pagliari PH, Fernandes GC, Rodrigues WL, Boleta EHM, Jalal A, Céu EGO, de Lima BH, Lavres J, Filho MCMT (2022) Improving sustainable field-grown wheat production with Azospirillum brasilense under tropical conditions: a potential tool for improving nitrogen management. Front Environ Sci 10:821628

    Article  Google Scholar 

  • Godina G, Vandenbossche B, Schmidt M, Sender A, Tambe AH, Touceda-González M, Ehlers RU (2023) Entomopathogenic nematodes for biological control of Psylliodes chrysocephala (Coleoptera: Chrysomelidae) in oilseed rape. J Invertebrate Pathol 197б:107894.

  • Gomez F, Salmeron V, Rodelas B, Martinez-Toled MV, Gonzalez-Lopez J (1998) Response of Azospirillum brasilense to the pesticides bromopropylate and methidathion on chemically defined media and dialysed-soil media. Ecotoxicology 7:43–47

    Article  CAS  Google Scholar 

  • Gureev AP, Shaforostova EA, Starkov AA, Popov VN (2017) Simplified qPCR method for detecting excessive mtDNA damage induced by exogenous factors. Toxicology 382:67–74

    Article  CAS  PubMed  Google Scholar 

  • Gureeva MV, Gureev AP (2023) Molecular mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors. Int J Mol Sci 24:9122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gureeva MV, Alimova AA, Eremina AA, Kryukova VA, Kirillova MS, Filatova OA, Moskvitina MI, Krutskikh EP, Chernyshova EV, Gureev AP (2023) Enhancing wheat seedling tolerance to cypermethrin through Azospirillum thiophilum pretreatment. Russ J Plant Physiol 70:1134

    Article  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2012) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  Google Scholar 

  • Khammas IM, Agerou E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere. Soil Res Microbiol 140:679–693

    CAS  PubMed  Google Scholar 

  • Khanday AA (2022) Phytotoxicity of common pesticides to physiological and biochemical makeup of Triticum aestivum var. Lok-1. GSC Biol Pharmaceutical Sci 18:092–099

    Article  CAS  Google Scholar 

  • Kim J-S, Yun B-W, Choi JS, Kim T-J, Kwak S-S, Cho K-Y (2004) Death mechanisms caused by carotenoid biosynthesis inhibitors in green and in undeveloped plant tissues. Pestic Biochem Physiol 78:127–139

    Article  Google Scholar 

  • Knossow N, Siebner H, Bernstein A (2020) Isotope fractionation (δ13C, δ15N) in the microbial degradation of bromoxynil by aerobic and anaerobic soil enrichment cultures. J Agric Food Chem 68:1546–1554

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Hameed A, Shen FT, Liu YC, Hsu YH, Shahina M, Lai WA, Young CC (2014) Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie Van Leeuwenhoek 105:1149–1162

    Article  CAS  PubMed  Google Scholar 

  • Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health Part B 45:348–359

    Article  CAS  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Novinscak A, Filion M (2018) Enhancing total lipid and stearidonic acid yields in Buglossoides arvensis through PGPR inoculation. J Appl Microbiol 125:203–215

    Article  CAS  PubMed  Google Scholar 

  • Pan JY, Wang CB, Nong JL, **e QL, Shen TM (2023) Plant growth-promoting rhizobacteria are important contributors to rice yield in karst soils. 3 Biotech 13:158.

  • Pandey JK, Dubey G, Gopal R (2014) Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy. J Photochem Photobiol B 151:297–305

    Article  PubMed  Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–356

    Article  CAS  Google Scholar 

  • Prathiksha J, Narasimhamurthy RK, Dsouza HS, Mumbrekar KD (2023) Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Mol Biol Rep 50:5465–5479

    Article  CAS  PubMed  Google Scholar 

  • Rabelo JS, Santos EAD, Melo EI, Vaz GMV, Mendes GO (2023) Tolerance of microorganisms to residual herbicides found in eucalyptus plantations. Chemosphere 329:138630

    Article  CAS  PubMed  Google Scholar 

  • Rajabi-Khamseh S, Danesh Shahraki A, Rafieiolhossaini M, Saeidi K (2021) Bacterial inoculation positively affects the quality and quantity of flax under deficit irrigation regimes. J Appl Microbiol 131:321–338

    Article  CAS  PubMed  Google Scholar 

  • Raji P, Pillai MV (2000) Effect of plant protection chemicals on Azospirillum in cowpea [Vigna unguiculata (L.) Walp]. Legume Res Int J 23:177–179

    Google Scholar 

  • Revellin C, Giraud JJ, Silva N, Wadoux P, Catroux G (2001) Effect of some granular insecticides currently used for the treatment of maize crops (Zea mays) on the survival of inoculated Azospirillum lipoferum. Pest Manag Sci 57:1075–1080

    Article  CAS  PubMed  Google Scholar 

  • Rong Z, Tu P, Xu P, Sun Y, Yu F, Tu N, Guo L, Yang Y (2021) The mitochondrial response to DNA damage. Front Cell Dev Biol 9:669379

    Article  PubMed  PubMed Central  Google Scholar 

  • Salem EM (2016) Side effects of certain pesticides on chlorophyll and carotenoids contents in leaves of maize and tomato plants. Middle East J Agric Res 5:566–571

    Google Scholar 

  • Sanders LH, Paul KC, Howlett EH, Lawal H, Boppana S, Bronstein JM, Ritz B, Greenamyre JT (2017) Editor’s highlight: base excision repair variants and pesticide exposure increase Parkinson’s disease risk. Toxicol Sci 158:188–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos MS, Rondina ABL, Nogueira MA, Hungria M (2020) Compatibility of Azospirillum brasilense with pesticides used for treatment of maize seeds. Int J Microbiol 2020:8833879

    Article  PubMed  PubMed Central  Google Scholar 

  • Shakir SK, Irfan S, Akhtar B, Rehman SU, Daud MK, Taimur N, Azizullah A (2018) Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology 27:919–935

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Song XP, Singh RK, Vaishnav A, Gupta S, Singh P, Guo DJ, Verma KK, Li YR (2022) Impact of carbendazim on cellular growth, defence system and plant growth promoting traits of Priestia megaterium ANCB-12 isolated from sugarcane rhizosphere. Front Microbiol 13:1005942

    Article  PubMed  PubMed Central  Google Scholar 

  • Shime-Hattori A, Kobayashi S, Ikeda S, Asano R, Shime H, Shinano T (2011) A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria. J Appl Microbiol 111:915–924

    Article  CAS  PubMed  Google Scholar 

  • Syromyatnikov MY, Gureev AP, Starkova NN, Savinkova OV, Starkov AA, Lopatin AV, Popov VN (2020) Method for detection of mtDNA damages for evaluating of pesticides toxicity for bumblebees (Bombus terrestris L.). Pesticide Biochem Physiol 169:104675.

  • Takahashi WY, Galvao CW, Urrea-Valencia S, Goncalves DRP, Hyeda D, Caires EF, Etto RM (2021) Impact of seed-applied fungicide and insecticide on Azospirillum brasilense survival and wheat growth-promoting ability. Lett Appl Microbiol 74:604–612

    Article  Google Scholar 

  • Tao Y, Jia C, **g J, Zhang J, Yu P, He M, Wu J, Chen L, Zhao E (2021) Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Bei**g, China. Food Chem 350:129245

    Article  CAS  PubMed  Google Scholar 

  • Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT (2021) Agriculture development, pesticide application, and its impact on the environment. Int J Environ Res Public Health 18:1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitkalova IY, Gureev AP, Shaforostova EA, Boyko ON, Igamberdiev AU, Popov VN (2021) The effect of pesticides on the mtDNA integrity and bioenergetic properties of potato mitochondria. Pestic Biochem Physiol 172:104764

    Article  CAS  PubMed  Google Scholar 

  • Vladimirov YA, Proskurnina EV (2009) Free radicals and cell chemiluminescence. Biochemistry (Moscow) 74:1545–1566

    Article  CAS  PubMed  Google Scholar 

  • Vladimirov YA, Proskurnina EV, Izmajlov DY (2011) Kinetic chemiluminescence as a method for the study of free radical reactions. Cell Biophys 56:1055–1062

    Article  Google Scholar 

  • Wang Q, Yu H, **a Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances stress tolerance: a potential biotechnological application. Microb Cell Fact 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Xu J, Wu G, Liu T, Yang ZL (2021) Genomic and experimental investigations of Auriscalpium and Strobilurus fungi reveal new insights into pinecone decomposition. Autorea. https://doi.org/10.22541/au.162454345.59587589/v1

  • Wen L, Miao X, Ding J, Tong X, Wu Y, He Y, Zheng F (2023) Pesticides as a risk factor for cognitive impairment: natural substances are expected to become alternative measures to prevent and improve cognitive impairment. Front Nutr 10:1113099

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci 94:514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang Y, He X, **ao Q, Han S, Jia Z, Li S, Ding W (2021) Discovery of a novel plant-derived agent against Ralstonia solanacearum by targeting the bacterial division protein FtsZ. Pestic Biochem Physiol 177:104892

    Article  CAS  PubMed  Google Scholar 

  • Yang TN, Wang YX, Jian PA, Ma XY, Zhu SY, Li XN, Li JL (2023) Holistic assessment based on hepatocyte mitochondria: lycopene repairs oxidized mtDNA to alleviate mitochondrial stress induced by atrazine. J Agric Food Chem 71:20325–20335

    Article  CAS  PubMed  Google Scholar 

  • Zaheer MS, Ali HH, Iqbal MA, Erinle KO, Javed T, Iqbal J, Hashmi MIU (2022) Cytokinin Production by Azospirillum brasilense contributes to increase in growth, yield, antioxidant, and physiological systems of wheat (Triticum aestivum L.). Front Microbiol 13:886041.

Download references

Acknowledgements

This work was supported by the Russian Science Foundation [Grant Number 23-24-00277].

Author information

Authors and Affiliations

Authors

Contributions

Artem P. Gureev and Maria V. Gureeva contributed to the study conception and design. Material preparation, data collection and analysis were performed by Vera A. Kryukova, Anna A. Eremina, Alina A. Alimova, Marina. S. Kirillova, Olesya A. Filatova, Marina I. Moskvitina, Stanislav V. Kozin and Oxana M. Lyasota. The first draft of the manuscript was written by Artem P. Gureev and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria V. Gureeva.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gureev, A.P., Kryukova, V.A., Eremina, A.A. et al. Plant-growth promoting rhizobacteria Azospirillum partially alleviate pesticide-induced growth retardation and oxidative stress in wheat (Triticum aestivum L.). Plant Growth Regul (2024). https://doi.org/10.1007/s10725-024-01186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10725-024-01186-2

Keywords

Navigation