Log in

Ascorbate oxidation stimulates rice root growth via effects on auxin and abscisic acid levels

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ascorbic acid (AA) and AA oxidation play a vital role in plant growth and development. In this study, we investigated the role of AA and AA oxidation in rice (Oryza sativa) root growth. Our results show, that rice AA biosynthesis mutant vitamin C 1 (vtc1) seedlings have a defect in radicle and early vegetative root growth. AA measurement displayed significantly lower levels of total AA, and mainly lower dehydroascorbic acid (DHA) in the roots of the vtc1 mutant. Phytohormone analysis shows that roots of the vtc1 mutant also contain lower levels of Indole-3-acetic acid (IAA) and abscisic acid (ABA). The vtc1 radicle root phenotype could be complemented by exogenous ABA or auxin (1- naphthalene acetic acid (NAA)) application, but not by AA application. Also, NAA and ABA treatments promoted radicle and early vegetative root growth similarly in WT as in the vtc1 mutant, implicating that they act downstream of AA biosynthesis. Both the radicle and the early vegetative root growth phenotype of vtc1 could be complemented by treatments with DHA or ascorbate oxidase (AO), the enzyme that oxidizes AA to DHA. Our data further demonstrate accumulation of IAA and ABA upon AO treatment in wildtype seedlings, implicating that AO-induced rice root growth is regulated via auxin and ABA levels. Taken together, these results imply that ascorbic acid and its oxidation stimulates rice root growth via positive effects on auxin and ABA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Alarcón M, Salguero J, Lloret PG (2019) Auxin modulated initiation of lateral roots is linked to pericycle cell length in maize. Front Plant Sci 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjum NA (2015) Book review: oxidative damage to plants-antioxidant networks and signaling. Front Plant Sci 6:452

    Article  PubMed Central  Google Scholar 

  • Arrigoni O, Calabrese G, De Gara L, Bitonti MB, Liso R (1997) Correlation between changes in cell ascorbate and growth of Lupinus albus seedlings. J Plant Physiol 150(3):302–308

    Article  CAS  Google Scholar 

  • Caviglia M, Morales LM, Concellón A, Grozeff GG, Wilson M, Foyer C, Bartoli C (2018) Ethylene signaling triggered by low concentrations of ascorbic acid regulates biomass accumulation in Arabidopsis thaliana. Free Radic Biol Med 122:130–136

    Article  CAS  PubMed  Google Scholar 

  • Chavan SN, De Kesel J, Desmedt W, Degroote E, Singh RR, Nguyen GT, Demeestere K, De Meyer T, Kyndt T (2022) Dehydroascorbate induces plant resistance in rice against root-knot nematode Meloidogyne graminicola. Mol Plant Pathol 23(9):1303–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-W, Yang Y-W, Lur H-S, Tsai Y-G, Chang M-C (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47(1):1–13

    Article  PubMed  Google Scholar 

  • Chen C, Twito S, Miller G (2014) New Cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds. Plant Signal Behav 9(12):e976489

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Cao X-l, Niu J-p (2021) Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLoS ONE 16(4):e0250926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin P, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27(8):959–970

    Article  CAS  Google Scholar 

  • Correa-Aragunde N, Foresi N, Delledonne M, Lamattina L (2013) Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J Exp Bot 64(11):3339–3349

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33(3):543–555

    Article  PubMed  Google Scholar 

  • De Tullio M, Arrigoni O (2004) Hopes, disillusions and more hopes from vitamin C. Cell Mol Life Sci CMLS 61(2):209–219

    Article  PubMed  Google Scholar 

  • De Tullio MC, Ciraci S, Liso R, Arrigoni O (2007) Ascorbic acid oxidase is dynamically regulated by light and oxygen. A tool for oxygen management in plants? J Plant Physiol 164(1):39–46

    Article  PubMed  Google Scholar 

  • De Tullio M, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8(3):e23213

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhar A, Patel K, Shah C (1980) Role of ascorbic acid in auxin induced cell elongation. Histochemistry 69(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Esaka M, Imagi J, Suzuki K, Kubota K (1988) Formation of ascorbate oxidase in cultured pumpkin cells. Plant Cell Physiol 29(2):231–235

    CAS  Google Scholar 

  • Esaka M, Fujisawa K, Goto M, Kisu Y (1992) Regulation of ascorbate oxidase expression in pumpkin by auxin and copper. Plant Physiol 100(1):231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta 194(2):215–222

    Article  CAS  Google Scholar 

  • Fotopoulos V, Kanellis AK (2013) Altered apoplastic ascorbate redox state in Tobacco plants via ascorbate oxidase overexpression results in delayed dark-induced senescence in detached leaves. Plant Physiol Biochem 73:154–160

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH (2003) The role of ascorbic acid in defense networks and signalling in plants. Vitamin C: its function and biochemistry in animals and plants:65–82

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Kyndt T, Hancock RD (2019) Vitamin C in plants: novel concepts, New perspectives, and outstanding issues. Antioxidants & redox signaling

  • Frei M, Wissuwa M, Pariasca-Tanaka J, Chen CP, Südekum K-H, Kohno Y (2012) Leaf ascorbic acid level–Is it really important for ozone tolerance in rice? Plant Physiol Biochem 59:63–70

    Article  CAS  PubMed  Google Scholar 

  • Gallei M, Luschnig C, Friml J (2020) Auxin signalling in growth: Schrödinger’s cat out of the bag. Curr Opin Plant Biol 53:43–49

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • Guan Q, Wang Z, Wang X, Takano T, Liu S (2015) A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J Plant Physiol 175:183–191

    Article  CAS  PubMed  Google Scholar 

  • Haeck A, Van Langenhove H, Harinck L, Kyndt T, Gheysen G, Höfte M, Demeestere KJA, Chemistry B (2018) Trace analysis of multi-class phytohormones in Oryza sativa using different scan modes in high-resolution Orbitrap mass spectrometry: method validation, concentration levels, and screening in multiple accessions.1–13

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4(2):118–122

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci 93(15):7783–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höller S, Ueda Y, Wu L, Wang Y, Hajirezaei M-R, Ghaffari M-R, von Wirén N, Frei M (2015) Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L). Plant Mol Biol 88(6):545–560

    Article  PubMed  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1997) The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiol 114(4):1247–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Munné-Bosch S, Burritt DJ, Diaz-Vivancos P, Fujita M, Lorence A (2017) Ascorbic acid in plant growth, development and stress tolerance. Springer, Heidelberg

    Book  Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17(5):1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha K, Puthur JT (2016) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253(2):277–289

    Article  CAS  PubMed  Google Scholar 

  • Kärkönen A, Dewhirst RA, Mackay CL, Fry SC (2017) Metabolites of 2, 3-diketogulonate delay peroxidase action and induce non-enzymic H2O2 generation: potential roles in the plant cell wall. Arch Biochem Biophys 620:12–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempinski CF, Crowell SV, Smeeth C, Barth C (2013) The novel Arabidopsis thaliana svt2 suppressor of the ascorbic acid-deficient mutant vtc1-1 exhibits phenotypic and genotypic instability. F1000Research. Doi: 10.12688/f1000research.2-6.v1

  • Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH (2011) The transcription factor ABI4 is required for the ascorbic acid–dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23(9):3319–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122(3):925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kka N, Rookes J, Cahill D (2018) The influence of ascorbic acid on root growth and the root apical meristem in Arabidopsis thaliana. Plant Physiol Biochem 129:323–330

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Park CH, Kim AR, Chang SC, Kim S-H, Lee WS, Kim S-K (2011) The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana. Plant Physiol Biochem 49(8):909–916

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cai J, Liu F, Dai T, Cao W, Jiang D (2014) Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring’s seedlings. J Agron Crop Sci 200(6):467–478

    Article  CAS  Google Scholar 

  • Li R, **n S, Tao C, ** X, Li H (2017) Cotton ascorbate oxidase promotes cell growth in cultured Tobacco bright yellow-2 cells through generation of apoplast oxidation. Int J Mol Sci 18(7):1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C, Sauter M (2019) Polar auxin transport determines adventitious root emergence and growth in rice. Front Plant Sci 10:444

    Article  PubMed  PubMed Central  Google Scholar 

  • McAdam SA, Brodribb TJ, Ross JJ (2016) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39(3):652–659

    Article  CAS  PubMed  Google Scholar 

  • Miret JA, Müller M (2017) AsA/DHA redox pair influencing plant growth and stress tolerance. Ascorbic acid in plant growth, development and stress tolerance. Springer, Heidelberg, pp 297–319

  • Muday G, Haworth P (1994) Tomato root growth, gravitropism, and lateral development: correlation with auxin transport. Plant Physiol Biochemistry: PPB 32(2):193–203

    CAS  Google Scholar 

  • Nahar K, Kyndt T, Nzogela YB, Gheysen G (2012) Abscisic acid interacts antagonistically with classical defense pathways in rice–migratory nematode interaction. New Phytol 196(3):901–913

    Article  CAS  PubMed  Google Scholar 

  • Olmos E, Kiddle G, Pellny T, Kumar S, Foyer C (2006) Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana. J Exp Bot 57(8):1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66(4):1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15(4):939–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6(4):379–389

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in Tobacco. Plant Physiol 141(2):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plumb W, Townsend AJ, Rasool B, Alomrani S, Razak N, Karpinska B, Ruban AV, Foyer CH (2018) Ascorbate-mediated regulation of growth, photoprotection, and photoinhibition in Arabidopsis thaliana. J Exp Bot 69(11):2823–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman A, Ali A (2015) Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. Seedling 14(186):25

    Google Scholar 

  • Reversat G, Boyer J, Sannier C, Pando-Bahuon A (1999) Use of a mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing of plant-parasitic nematodes in the laboratory. Nematology 1(2):209–212

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid BJN (2012) Fiji: an open-source platform for biological-image analysis. 9(7): 676

  • Seo DH, Seomun S, Choi YD, Jang G (2020) Root development and stress tolerance in rice: the key to improving stress tolerance without yield penalties. Int J Mol Sci 21(5):1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah T, Latif S, Khan H, Munsif F, Nie L (2019) Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan. Agronomy 9(11):757

    Article  CAS  Google Scholar 

  • Singh RR, Nobleza N, Demeestere K, Kyndt T (2020a) Ascorbate oxidase induces systemic resistance in sugar beet against cyst nematode Heterodera schachtii. Front Plant Sci 11:591715

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RR, Verstraeten B, Siddique S, Tegene AM, Tenhaken R, Frei M, Haeck A, Demeestere K, Pokhare S, Gheysen G (2020b) Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. J Exp Bot 71(14):4271–4284

    Article  CAS  PubMed  Google Scholar 

  • Singh RR, Pajar JA, Audenaert K, Kyndt T (2021) Induced resistance by ascorbate oxidation involves potentiating of the phenylpropanoid pathway and improved rice tolerance to parasitic nematodes. Front Plant Sci 12:713870

    Article  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (2018) Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic Biol Med 122:116–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. CRC Crit Rev Plant Sci 19(4):267–290

    Article  CAS  Google Scholar 

  • Song W, Wang F, Chen L, Ma R, Zuo X, Cao A, **e S, Chen X, ** X, Li H (2019) GhVTC1, the Key Gene for Ascorbate Biosynthesis in Gossypium hirsutum, involves in cell elongation under control of Ethylene. Cells 8(9):1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122(3):967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suekawa M, Fujikawa Y, Esaka M (2017) Physiological role of ascorbic acid recycling enzymes in plants. Ascorbic acid in plant growth, development and stress tolerance:355–373

  • Suzuki Y, Ogiso K (1973) Development of Ascorbate Oxidase Activity and its Iso-enzyme Pattern in the roots of pea seedlings. Physiol Plant 29(2):169–172

    Article  CAS  Google Scholar 

  • Takahama U, Oniki T (1994) The association of ascorbate and ascorbate oxidase in the apoplast with IAA-enhanced elongation of epicotyls from Vigna angularis. Plant Cell Physiol 35(2):257–266

    CAS  Google Scholar 

  • Ueda Y, Wu L, Frei M (2013) A critical comparison of two high-throughput ascorbate analyses methods for plant samples. Plant Physiol Biochem 70:418–423

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Maes L, De Smet I, Himanen K, Naudts M, Inzé D, Beeckman T (2005) Auxin regulation of cell cycle and its role during lateral root initiation. Physiol Plant 123(2):139–146

    Article  CAS  Google Scholar 

  • Venkatesh J, Park SW (2014) Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot Stud 55(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365–369

    Article  CAS  PubMed  Google Scholar 

  • Wu LB, Ueda Y, Lai SK, Frei M (2017) Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L). Plant Cell Environ 40(4):570–584

    Article  CAS  PubMed  Google Scholar 

  • **a L, Marquès-Bueno MM, Karnik R (2020) Trafficking SNARE SYP132 partakes in auxin-associated root growth. Plant Physiol 182(4):1836–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** auxin-mediated root system architecture. Trends Plant Sci 25(2):121–123

    Article  CAS  PubMed  Google Scholar 

  • Yimer HZ, Nahar K, Kyndt T, Haeck A, Van Meulebroek L, Vanhaecke L, Demeestere K, Höfte M, Gheysen G (2018) Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice. New Phytol 218(2):646–660

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Tian H, Yue K, Liu J, Zhang B, Li X, Ding Z (2016) A P-loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in Arabidopsis root. PLoS Genet 12(9):e1006175

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wang J, Li S, Kakan X, Zhou Y, Miao Y, Wang F, Qin H, Huang R (2019) Ascorbic acid integrates the antagonistic modulation of ethylene and abscisic acid in the accumulation of reactive oxygen species. Plant Physiol 179(4):1861–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeevaart JA, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39(1):439–473

    Article  CAS  Google Scholar 

  • Zhang J, Peng Y, Guo Z (2008) Constitutive expression of pathogen-inducible OsWRKY31 enhances Disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18(4):508–521

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J (2015) OsAUX 1 controls lateral root initiation in rice (O ryza sativa L). Plant Cell Environ 38(11):2208–2222

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen J, Liu C, Yin W (2020) Root-specific NF‐Y family transcription factor, PdNF‐YB21, positively regulates root growth and drought resistance by abscisic acid‐mediated indoylacetic acid transport in Populus. New Phytol 227(2):407–426

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Special Research Fund (Bijzonder Onderzoeksfonds) of Ghent University through a BOF Starting Grant to Tina Kyndt.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RRS, KD and TK. The first draft of the manuscript was written by RRS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tina Kyndt.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Abhijeet Shankar.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 372.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.R., Demeestere, K. & Kyndt, T. Ascorbate oxidation stimulates rice root growth via effects on auxin and abscisic acid levels. Plant Growth Regul 103, 151–163 (2024). https://doi.org/10.1007/s10725-023-01096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-023-01096-9

Keywords

Navigation