Log in

Transcriptome profiling provides new insights into ABA-mediated genes and pathways in leaves, stems, and roots of mung bean seedlings

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is well known as a plant stress hormone. However, ABA-mediated regulation of gene expression profile in plant leaves, stems, and roots under normal conditions has not been fully elucidated. In the present study, foliar spray of 10 μM ABA differentially altered the gene expression levels and profiles of the leaf, root, and stem tissues in mung bean seedlings. An average of 11.3%, 13.8%, and 14.0% of the genes with transcripts per kilobase per million mapped reads (TPM) ≥ 1 were significantly (p ≤ 0.05) regulated by ABA in the leaf, stem, and root tissues, respectively. A total of 690 differentially expressed genes (DEGs) were detected, of which 232, 259, and 227 DEGs were identified in the leaves, stems, and roots, respectively. A majority of the DEGs in leaves and roots were upregulated at 1 and 9 days after ABA application, while those in stems were downregulated. Of the significantly (FDR < 0.05) enriched KEGG pathways, MAPK signaling, plant hormone signal transduction, and plant-pathogen interaction shared many common genes, suggesting that ABA fundamentally triggered the cellular signal transduction. All the genes involved in phenylpropanoid biosynthesis and flavonoid biosynthesis were upregulated in leaves, implying the activation of these metabolic processes. Furthermore, apart from the signaling-related DEGs, most of the DEGs were oxidoreductases-, transporters-, and pathogen-resistant proteins-coding genes, which are related to cellular oxidative response and abiotic and biotic stress response, indicating the regulation of ABA on stress-responsive genes. The results might be conducive to understand exogenous ABA-mediated differential regulation of gene expression in plant leaves, stems, and roots, especially in leguminous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  • Alazem M, Lin KY, Lin NS (2014) The abscisic acid pathway has multifaceted effects on the accumulation of bamboo mosaic virus. Mol Plant Microbe Interact 27:177–189

    Article  CAS  PubMed  Google Scholar 

  • An JP, Wang XF, Zhang XW, Bi SQ, You CX, Hao YJ (2019) MdBBX22 regulates UV–B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnol J 17:2231–2233

    Article  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18(6):325–333

    Article  CAS  PubMed  Google Scholar 

  • Breria CM, Hsieh CH, Yen JY, Nair R, Lin CY, Huang SM, Noble TJ, Schaeitner R (2020) Population structure of the world vegetable center mungbean mini core collection and genome-wide association map** of loci associated with variation of seed coat luster. Trop Plant Biol 13:1–12

    Article  Google Scholar 

  • Cheng Z, ** R, Cao M, Liu X, Chan Z (2016) Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon). Plant Cell Tissue Org Cult 125(2):231–240

    Article  CAS  Google Scholar 

  • Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M (2015) Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res 128:679–686

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–761

    Article  CAS  PubMed  Google Scholar 

  • Coll-Garcia D, Mazuch J, Altmann T, Mussig C (2004) EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett 563:82–86

    Article  CAS  PubMed  Google Scholar 

  • Dahiya PK, Linnemann AR, Van Boekel MAJS, Khetarpaul N, Grewal RB, Nout MJR (2015) Mung bean: technological and nutritional potential. Crit Rev Food Sci Nutr 55:670–688

    Article  CAS  PubMed  Google Scholar 

  • Das S, Kar RK (2018) Abscisic acid mediated differential growth responses of root and shoot of Vigna radiata (L) Wilczek seedlings under water stress. Plant Physiol Biochem 123:213–221

    Article  CAS  PubMed  Google Scholar 

  • Dong NQ, Lin HX (2021) Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J Integr Plant Biol 63:180–209

    Article  CAS  PubMed  Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernie AR (2019) An early role for flavonoids in defense against oomycete infection. Curr Biol 29:R688–R690

    Article  CAS  PubMed  Google Scholar 

  • Ganesan K, Xu B (2018) A critical review on phytochemical profile and health promotingeffects of mung bean (Vigna radiata). Food Sci Hum Well 7:11–33

    Article  Google Scholar 

  • Glavinas H, Krajcsi P, Cserepes J, Sarkadi B (2004) The role of ABC transporters in drug resistance metabolism and toxicity. Curr Drug Deliv 1:27–42

    Article  CAS  PubMed  Google Scholar 

  • González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo JL, Xu LP, Fang JP, Su YC, Fu HY, Que YX, Xu JS (2012) A novel dirigent protein gene with highly stem-specific expression from sugarcane response to drought salt and oxidative stresses. Plant Cell Rep 31:1801–1812

    Article  CAS  Google Scholar 

  • Hao W, Collier SM, Moffett P, Chai J (2013) Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). J Biol Chem 288:35868–35876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L, Su W, Zhang Y, Ye C, Shen Y, Li QQ (2018) Transcriptome profiling during mangrove viviparity in response to abscisic acid. Sci Rep 8:770

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q (2019) Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11:1238

    Article  CAS  PubMed Central  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol Bioch 46:1106–1111

    Article  CAS  Google Scholar 

  • Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kaniya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA 109:9653–9658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keatinge JDH, Easdown WJ, Yang RY, Chadha ML, Shanmugasundaram S (2011) Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica 180:129–141

    Article  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyana Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107:2361–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23:513–522

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Leng Y, Li Y, Wen Y, Zhao H, Wang Q, Li SW (2020) Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Ecotoxicol Environ Saf 204:111098

    Article  CAS  PubMed  Google Scholar 

  • Leng Y, Li Y, Ma YH, He LF, Li SW (2021) Abscisic acid modulates differential physiological and biochemical responses of roots stems and leaves in mung bean seedlings to cadmium stress. Environ Sci Pollut Res 28:6030–6043

    Article  CAS  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12:323

    Article  CAS  Google Scholar 

  • Li SW, Leng Y, Feng L, Zeng XY (2014) Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiate (L) Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res 21:525–537

    Article  CAS  Google Scholar 

  • Li SW, Shi RF, Leng Y, Zhou Y (2016) Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 17(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  • Li SW, Leng Y, Shi RF (2019) Transcriptome characterization of gene profiling during early stage of nitric oxide induced adventitious rooting in mung bean seedlings. J Plant Growth Regul 39:430–455

    Article  Google Scholar 

  • Li C, Wu J, Hu KD, Wei SW, Sun HY, Hu LY, Han Z, Yao GF, Zhang H (2020) PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Hortic Res 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CY, Chen XZ, Wang SH, Wang LX, Sun L, Mei L, Xu N (2006) The genetic diversity of mung bean germplasm in China. J Plant Genet Resour 7:459–463

    Google Scholar 

  • Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 66:5663–5681

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Dai SJ, Ren J, Zhang CX, Ding Y, Li Z, Sun Y, Ji K, Wang Y, Li Q (2014) The role of ABA in the maturation and postharvest life of a nonclimacteric sweet cherry fruit. J Plant Growth Regul 33:373–383

    Article  CAS  Google Scholar 

  • Luo D, Wu Y, Liu J, Zhou Q, Liu W, Wang Y, Yang Q, Wang Z, Liu Z (2019) Comparative transcriptomic and physiological analyses of Medicago sativa L indicates that multiple regulatory networks are activated during continuous ABA treatment. Int J Mol Sci 20:47

    Article  Google Scholar 

  • Manzi M, Lado J, Rodrigo MJ, Zacarías L, Arbona V, Gómez-Cadenas A (2015) Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant Cell Physiol 56:2457–2466

    Article  CAS  PubMed  Google Scholar 

  • Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • McAdam SA, Brodribb TJ, Ross JJ (2016) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39:652–659

    Article  CAS  PubMed  Google Scholar 

  • Mou W, Li D, Luo Z, Mao L, Ying T (2015) Transcriptomic analysis reveals possible influences of ABA on secondary metabolism of pigments flavonoids and antioxidants in tomato fruit during ripening. PLoS ONE 10:e0129598

    Article  PubMed  PubMed Central  Google Scholar 

  • Mou W, Li D, Bu J, Jiang Y, Khan ZU, Luo Z, Mao L, Ying T (2016) Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening. PLoS ONE 11:e0154072

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlap** transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36:791–805

    Article  CAS  PubMed  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Südhof TC (1998) C2-domains structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) dgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224

    Article  CAS  PubMed  Google Scholar 

  • Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1 a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia plays a major role in plant pathogen defense. Plant Physiol 139:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakaran SMN, Bukkan DS (2021) A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J Food Biochem 45:e13743

    Google Scholar 

  • Sun X, Gilroy EM, Chini A, Nurmberg PL, Hein I, Lacomme C, Birch PRJ, Hussain A, Yun BW, Loake GJ (2011) ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytol 192:471–482

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y (2020) ScAOC1 an allene oxide cyclase gene confers defense response to biotic and abiotic stresses in sugarcane. Plant Cell Rep 39:785–1801

    Article  Google Scholar 

  • Tang D, Dong Y, Ren H, Li L, He C (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong J, Walk TC, Han P, Chen L, Shen X, Li Y, Gu C, **e L, Hu X, Liao X, Qin L (2020) Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L) and their responses to various stresses. BMC Plant Biol 20:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Varet A, Parker J, Tornero P, Nass N, Nürnberger T, Dangl JL, Scheel D, Lee J (2002) NHL25 and NHL3 two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense. Mol Plant Microbe Interact 15:608–616

    Article  CAS  PubMed  Google Scholar 

  • Vellosillo T, Martinez M, Lopez MA, Vicente J, Cascon T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM (2011) Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen J, Pan K (2013a) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res 20:1441–1449

    Article  CAS  Google Scholar 

  • Wang Y, Tao X, Tang XM, **ao L, Sun JL, Yan XF, Li D, Deng HY, Ma XR (2013b) Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. BMC Genomics 14:841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Chen D, Zhang X, Liu D, Cheng Y, Shen F (2018) Role of plant respiratory burst oxidase homologs in stress responses. Free Radic Res 52:826–839

    Article  CAS  PubMed  Google Scholar 

  • Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Lai Y, Lv L, Ji M, Han K, Yan D, Lu Y, Peng J, Rao S, Yan F, Zheng H, Chen J (2020) Fasciclin-like arabinogalactan gene family in Nicotiana benthamiana: genome-wide identification classification and expression in response to pathogens. BMC Plant Biol 20:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **e KL, Li LL, Zhang HH, Wang R, Tan XX, He YQ, Hong GJ, Li JM, Ming F, Yao XF, Yan F, Sun ZT, Chen JP (2018) Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant Cell Environ 41(10):2504–2514

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Yu J, Merewitz E, Huang B (2012) Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. J Am Soc Hortic Sci 137:96–106

    Article  CAS  Google Scholar 

  • Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie AR (2019) Revisiting the basal role of ABA–roles outside of stress. Trends Plant Sci 24:625–635

    Article  CAS  PubMed  Google Scholar 

  • Zegzouti H, Jones B, Marty C, Lelièvre JM, LatchéA PJC, Bouzayen MER (1997) A tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought ABA and wounding. Plant Mol Biol 35:847–854

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS (2013) Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci USA 110:14807–14812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (31760110).

Funding

This research was funded by the National Natural Science Foundation of China (31760110).

Author information

Authors and Affiliations

Authors

Contributions

Wu **-Min and Leng Yan: Methodology, Investigation, Preparation. Li Shi-Weng: Conceptualization, Methodology, Investigation, Writing, Funding acquisition, Supervision, Project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shi-Weng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interests.

Additional information

Communicated by Yoichi Sakata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PM., Leng, Y. & Li, SW. Transcriptome profiling provides new insights into ABA-mediated genes and pathways in leaves, stems, and roots of mung bean seedlings. Plant Growth Regul 98, 569–587 (2022). https://doi.org/10.1007/s10725-022-00892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00892-z

Keywords

Navigation