Log in

Genome-wide identification, functional prediction and expression profiling of long non-coding RNAs in Camelina sativa

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are a class of RNA regulatory molecules having roles in wide range of biological processes. They have been demonstrated to regulate gene expression at the posttranscriptional and transcriptional levels and to function in stress responses in plants and animals, but nothing is known about lncRNAs in Camelina (Camelina sativa L.), an emerging oil crop. Here, we report the first prediction of lncRNAs in the Camelina genome using comprehensive genomic approaches. We examined a Camelina drought stress cDNA library, and 5390 candidate Camelina sativa lncRNAs (CsalncRNAs) were identified, including 670 sense, 692 antisense, 1347 intergenic, and 2681 intronic harboring CsalncRNAs. The identified CsalncRNAs had an average nucleotide (nt) length of 497 bp and were mapped on each chromosome of C. sativa. Functional characterization through gene ontology (GO) and GO motif (GOMo) analysis of neighboring protein coding (PC) genes and motifs in the intergenic CsalncRNAs, respectively, indicated that these CsalncRNAs were involved in transcription-related activity, proteins, DNA and RNA binding, and abiotic/biotic stress response. Approximately 4.6% of CsalncRNA sequences were masked as repeat elements enriched with many repetitive sequences of transposable elements (TE), indicating the involvement of transposon silencing. Additionally, 55 intergenic CsalncRNAs were predicted as targets of miRNA, whereas nine target mimics were identified. Expression profiling of seven randomly selected CsalncRNAs using real-time quantitative polymerase chain reaction (RT-qPCR) showed tissue-specific expression, and these were highly up-regulated in Camelina leaves under extreme drought. Results of expression profiling indicated that these CsalncRNAs are involved in the progression of Camelina growth and development as well as its response to drought stress. Our results provide a basis for the functional study of lncRNAs in C. sativa that will serve as a valuable resource for future studies of the regulatory mechanisms underlying its growth and development as well as its stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55(3):383–396

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee A, Khurana JP, Jain M (2016) Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic arabidopsis suggest their role in abiotic stress response. Front Plant Sci 7:627

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackwell BJ, Lopez MF, Wang J, Krastins B, Sarracino D, Tollervey JR, Dobke M, Jordan IK, Lunyak VV (2012) Protein interactions with piALU RNA indicates putative participation of retroRNA in the cell cycle, DNA repair and chromatin assembly. Mob Genet Elements 2(1):26–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Brosnan CA, Voinnet O (2009) The long and the short of noncoding RNAs. Curr Opin Cell Biol 21(3):416–425

    Article  PubMed  CAS  Google Scholar 

  • Charon C, Moreno AB, Bardou F, Crespi M (2010) Non-protein-coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus. Mol Plant 3(4):729–739

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Zhang Y, ZHang X, Jia S, Chen S, Kang L (2016) Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Sci Rep 6:23330. https://doi.org/10.1038/srep23330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung PJ, Jung H, Jeong DH, Ha SH, Choi YD, Kim JK (2016) Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genom 17:563

    Article  CAS  Google Scholar 

  • Collins-Silva JE, Lu C, Cahoon EB (2011) Camelina: a designer biotech oilseed crop. Inform 22:610–613

    Google Scholar 

  • Dahro B, Wang F, Peng T, Liu J-H (2016) PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biol 16:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNAtarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, **ao J, Zhang Q (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid Rice. Proc Natl Acad Sci 109(7):2654–2659

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio- Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470(7333):284–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH Jr (2013) Map** the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 41(15):7401–7419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang W, Long L, Khatib H (2012) Genome-wide identification and initial characterization of bovine long non-coding RNAs from EST data. Anim Genet 43(6):674–682

    Article  PubMed  CAS  Google Scholar 

  • Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Gold stein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10:233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21(5):289–297

    Article  PubMed  CAS  Google Scholar 

  • Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25(10):4166–4182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juan L, Wang G, Radovich M, Schneider BP, Clare SE, Wang Y, Liu Y (2013) Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genet 6(Suppl 1):S7

    Google Scholar 

  • Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins Erin E, Huebert T, Sharpe AG, Parkin IAP (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706

    Article  PubMed  CAS  Google Scholar 

  • Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, Bollina V, Robinson SJ, Coutu C, Hegedus DD, Sharpe AG, Parkin IA (2016) The developmental transcriptome atlas of the biofuel crop Camelina sativa. Plant J 88(55):879–894

    Article  PubMed  CAS  Google Scholar 

  • Kang C, Liu Z (2015) Global identification and analysis of long noncoding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genom 16:815

    Article  CAS  Google Scholar 

  • Kanth BK, Kumari S, Choi SH, Ha HJ, Lee GJ (2015) Generation and analysis of expressed sequence tags (ESTs) of Camelina sativa to mine drought stress-responsive genes. Biochem Biophys Res Commun 467(1):83–93

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488

    Article  PubMed  CAS  Google Scholar 

  • Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, Yandell M, Feschotte C (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9(4):e1003470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30(5):814–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HS, Oh JM, Luan S, Carlson JE, Ahn SJ (2013) Cold stress causes rapid but differential changes in properties of plasma membrane H?-ATPase of camelina and rapeseed. J Plant Physiol 170(9):828–837

    Article  PubMed  CAS  Google Scholar 

  • Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3):570–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwak KJ, Kang H, Han KH, Ahn SJ (2013) Molecular cloning, characterization, and stress-responsive expression of genes encoding glycine-rich RNA-binding proteins in Camelina sativa L. Plant Physiol Biochem 68:44–51

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wu B, Xu J, Liu C (2014a) Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum. PLoS ONE 9(6):e99442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chetoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2014b) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15(2):R40

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhang Z, Wang T, Li Y (2016) Numerous genetic loci identified for drought tolerance in the maize nested association map** populations. BMC Genom 17(1):894

    Article  Google Scholar 

  • Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, Wang W, Peng M (2017) Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 7:45981. https://doi.org/10.1038/srep45981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33(5):867–874

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24(11):4333–4345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Wang L, Zhai H, Song X, He S, Liu Q (2014) A Novel a/b-hydrolase gene IbMas enhances salt tolerance in transgenic sweet potato. PLoS ONE 9(12):e115128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Hao L, Li D, Zhu L, Hu S (2015) Long non-coding RNAs and their biological roles in plants. Genom Proteom Bioinform 13:137–147

    Article  Google Scholar 

  • Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, Zarnegar BJ, Boxer LD, Rios EJ, Tao S, Kretz M, Khavari PA (2015) A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell 32(6):693–706. https://doi.org/10.1016/j.devcel.2015.01.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu X, Chen X, Mu M, Wang J, Wang X, Wang D, Yin Z, Fan W, Wang S, Guo L, Ye W (2016) Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton (Gossypium hirsutum L.). PLoS ONE 11(6):e0156723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28(17):2503–2510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinform 12(4):164–171

    Article  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki H (2014) Seed dormancy and germination—emerging mechanisms and new hypotheses. Front Plant Sci 5:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long non-coding RNAs with enhancer-like function in human. Cell 143(1):46–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ou LJ, Liu ZB, Zhang ZQ, Wei G, Zhang YP, Kang LY, Yang BZ, Yang S, Lv JH, Liu YH (2017) Noncoding and coding transcriptome analysis reveals the regulation roles of long noncoding RNAs in fruit development of hot pepper (Capsicum annuum L). Plant Growth Regul 83(1):141–156

    Article  CAS  Google Scholar 

  • Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM, Hatzigeorgiou AG (2013) DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 41:D239–D245

    Article  PubMed  CAS  Google Scholar 

  • Paul P, Dhandapani V, Choi SR, Lim YP (2016) Genome wide identification and functional prediction of long non-coding RNAs in Brassica rapa. Genes Genom 38(6):547–555

    Article  CAS  Google Scholar 

  • Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pezer Z, Brajkovic J, Feliciello I, Ugarkovic D (2011) Transcription of satellite DNAs in insects. Prog Mol Subcell Biol 51:161–178

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  PubMed  CAS  Google Scholar 

  • Poudel S, Aryal N, Lu C (2015) Identification of MicroRNAs and transcript targets in Camelina sativa by deep sequencing and computational methods. PLoS ONE 10(3):e0121542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger ME (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 8:145–166

    Article  CAS  Google Scholar 

  • Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, **a X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65(17):4975–4983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song X, Sun L, Luo H, Ma Q, Zhao Y, Pei D (2016) Genome-wide identification and characterization of long non-coding RNAs from mulberry (Morus notabilis) RNA-seq Data. Genes (Basel) 7(3):11. https://doi.org/10.3390/genes7030011

    Article  CAS  Google Scholar 

  • Sousa C, Johansson C, Charon C, Manyani H, Sautter C, Kondorosi A (2001) Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol 21(1):354–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subburaj S, Kim AY, Lee S, Kim KN, Suh MC, Kim GJ, Lee GJ (2016) Identification of novel stress-induced microRNAs and their targets in Camelina sativa using computational approach. Plant Biotechnol Rep 10(3):155 – 169

    Article  Google Scholar 

  • Swiezewski S, Liu F, Magsin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462:799–802

    Article  PubMed  CAS  Google Scholar 

  • Szcześniak MW, Rosikiewicz W, Makałowska I (2016) CANTATAdb: a collection of plant long non-coding RNAs. Plant Cell Physiol 57:e8. https://doi.org/10.1093/pcp/pcv201

    Article  PubMed  CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang J, Lan F, Shi Y, Segal E, Chang H (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(7274):689–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454(7200):126–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang WC, Yang YW, Liu B, Sanyal A, Zimmerman RC, Chen Y, Lajoie BR, Protacia A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Xu Z, Jiang J, Xu C, Kang J, **ao L, Wu M, **ong J, Guo X, Liu H (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25(1):69–80

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yuan D, Tu L, Gao W, He Y, Hu H, Wang P, Liu N, Lindsey K, Zhang X (2015) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol 207(4):1181–1197

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Liu SR, Zhang XY, Ma YJ, Hu CG, Zhang JZ (2017) Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirus trifoliata L. Raf.). Sci Rep 7:43226. https://doi.org/10.1038/srep43226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol 158(2):239–248

    Article  CAS  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlap** and adjacent genes. Cell 135(4):635–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wunderlich M, Groß-Hardt R, Schöffl F (2014) Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol 85(6):541–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • **a H, Zhang L, Wu G, Fu C, Long Y, **ang J, Gan J, Zhou Y, Yu L, Li M (2016) Genome-wide identification and characterization of microRNAs and target genes in Lonicera japonica. PLoS ONE 11(10):e0164140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant noncoding RNA database. Nucleic Acids Res 43:D982–D989

    Article  PubMed  CAS  Google Scholar 

  • Zaratiegui M, Irvin DV, Martienssen RA (2007) Noncoding RNAs and gene silencing. Cell 128(4):763–776

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Han Z, Guo Q, Lin Y, Zheng Y, Wu F, ** W (2014a) Identification of maize long non-coding RNAs responsive to drought stress. PLoS ONE 9(6):e98958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Liao J, Li Z, Yu Y, Zhang J, Li Q, Qu L, Shu W, Chen Y (2014b) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15(12):512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Hu W, Hao J, Lv S, Wang C, Tong W, Wang Y, Wang Y, Liu X, Ji W (2016) Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genom 17:238. https://doi.org/10.1186/s12864-016-2570-0

    Article  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou C, Wang Q, Lu C, Yang W, Zhang Y, Cheng H, Feng X, Prosper MA, Song G (2016) Transcriptome analysis reveals lng noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci China Life Sci 59(2):164–1671

    Article  PubMed  CAS  Google Scholar 

  • Zubr J (1997) Oil-seed crop Camelina sativa. Ind Crops Prod 6(2):113–119

    Article  Google Scholar 

  • Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Takahashi H, Jones MH, Santoro C, Sblattero D, Cotella D, Persichetti F, Carninci P, Gustincich S (2015) SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front Cell Neurosci 9:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the funds from Bio-industry Technology Development Program (No. 312033-5) and Golden Seed Project (Center for Vegetable Seed Development, No. 213003-05-1-SBW30), Ministry of Agriculture, Food and Rural Affairs (MAFRA) of Korea, and iPET (Korea Institute of Planning and Evaluation for Technology in Agriculture, Food and Rural Affairs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geung-Joo Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2018_410_MOESM1_ESM.tif

Supplementary Figure S1. Functional annotation of protein-coding genes identified as neighboring to the CsalncRNAs. All the genes are classified into three different categories as annotated by the GO terms. (A) Primary functions; (B) Biological processes; (C) Cellular components of the neighboring genes. (TIF 995 KB)

10725_2018_410_MOESM2_ESM.tif

Supplementary Figure S2. Hierarchical clustering analysis of all expressed CsalncRNAs and their nearest PC genes from the drought-induced Camelina leaf transcriptome library. Co-expression patterns of CsalncRNAs and their 5’ and 3’ neighboring PC genes were assessed by Log2 fold-change expression values from the EST transcriptome resource. In heatmap, red (A1–3) and green (B1–3) boxes represent CsalncRNA up-regulation: PC gene down-regulation and CsalncRNA down-regulation: PC gene up-regulation during drought conditions (10 kPa, 100 kPa, and Re-hyd), respectively. Reverse or positive correlation in expression between CsalncRNAs and neighboring PC genes are indicated by a blue bracket in heatmap. On the right-side panel, Venn analysis shows the number of CsalncRNAs that were up-regulated (A1–3) and down-regulated (B1–3) during each drought and in all drought conditions. Below, a color bar scale indicating either up- (red) or down- (green) regulation of expression. (TIF 2191 KB)

10725_2018_410_MOESM3_ESM.docx

Supplementary Table S1. List of primers designed and used in RT-qPCR analysis to determine the expression levels of lncRNAs in this study. (DOCX 12 KB)

Supplementary Table S2. List of lncRNAs identified in the Camelina leaf transcriptome library. (XLSX 1004 KB)

10725_2018_410_MOESM5_ESM.xlsx

Supplementary Table S3. List of identified protein-coding genes detected immediately upstream and downstream of the CsalncRNAs. (XLSX 135 KB)

Supplementary Table S4. Repeat elements in lncRNAs of C. Sativa. (DOCX 29 KB)

Supplementary Table S5. List of identified intergenic-CsalncRNAs as putative targets of miRNAs. (XLSX 27 KB)

10725_2018_410_MOESM8_ESM.xlsx

Supplementary Table S6. List of functional encoding genes targeted by Camelina drought-responsive miRNAs regulating intergenic CsalncRNAs. (XLSX 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subburaj, S., Jeon, Y., Tu, L. et al. Genome-wide identification, functional prediction and expression profiling of long non-coding RNAs in Camelina sativa. Plant Growth Regul 86, 49–63 (2018). https://doi.org/10.1007/s10725-018-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0410-8

Keywords

Navigation