Log in

Cloning and characterization of vacuolar H+-pyrophosphatase gene (AnVP1) from Ammopiptanthus nanus and its heterologous expression enhances osmotic tolerance in yeast and Arabidopsis thaliana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Vacuolar H+-pyrophosphatase (H+-PPase) is one of the proton pumps involved in the response of plants to osmotic stress. In the present study, the vacuolar H+-PPase gene (AnVP1) was cloned from an epibiotic super-xerophytic plant, Ammopiptanthus nanus, by using rapid amplification of cDNA ends. The full-length cDNA was 2684 bp long, containing an open reading frame of 2298 bp that encoded 765 amino acids with 13 transmembrane regions. The putative protein shared high homology, conserved domains and amino acid residues with the H+-PPase proteins from other plants. The result of quantitative real-time PCR showed that the expression of the AnVP1 gene was strongly induced by salt, dehydration and abscisic acid, and inhibited by cold and heat. Complementary of the AnVP1 gene in the yeast mutant ena1 improved its salt and osmotic tolerance. Heterologous expression of the AnVP1 gene in the Arabidopsis mutant significantly restored its salt and drought tolerance. Under salt and drought stress, the transgenic plants exhibited more vigorous growth, more developed root system, higher proline content and relative water content, and lower malondialdehyde content and relative electrolytic leakage, as well as more Na+ and K+ accumulation in leaf, than the untransformed mutant plants. All these results demonstrate that the AnVP1 gene encodes a functional vacuolar H+-pyrophosphatase that plays a crucial role in adaptation of A. nanus to abiotic stress. After further evaluation for its tolerant function, this gene is hopeful to be used to genetic engineering for improving abiotic tolerance of commercial crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anjaneyulu E, Reddy PS, Sunita MS, Kishor PBK, Merigaa B (2014) Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghum bicolor. J Plant Physiol 171:789–798

    Article  CAS  PubMed  Google Scholar 

  • Arellano IP, Carmona-Alvarez F, Martinez AI, Rodriguez-Diaz J, Cervera J (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 19:372–382

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functuions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asaoka M, Segami S, Maeshima M (2014) Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. J Biochem 156:333–344

    Article  CAS  PubMed  Google Scholar 

  • Barragan V, Leidi EO, Andres Z, Rubio L, de Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldron RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Belogurov GA, Lahti R (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277:49651–49654

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Breusegem FV, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  CAS  PubMed  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity. Plant Sci 226:2–13

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Huang HW, Kang M, Ge XJ (2007) Development and characterization of microsatellite markers for an endangered shrub, Ammopiptanthus mongolicus (Leguminosae) and cross-species amplification in Ammopiptanthus nanus. Conserv Genet 8:1495–1497

    Article  CAS  Google Scholar 

  • Chen Y, Li LL, Zong JQ, Chen JB, Guo HL, Guo AG, Liu JX (2015) Heterologous expression of the halophyte Zoysia matrella H+-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana. Plant Physiol Biochem 91:49–55

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH (1959) Ammopiptanthus Cheng F. a new genus of Leguminosae from central Asia. J Bot USSR 44:1381–1386

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deng LQ, Yu HQ, Liu YP, Jiao PP, Zhou SF, Zhang SZ, Li WC, Fu FL (2014) Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco. Gene 539:132–140

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trend Plant Sci 5:206–211

    Article  Google Scholar 

  • Friml J (2003) Auxin transport—sha** the plant. Curr Opin Plant Biol 6:7–12

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Courty PE, Signor CL, Wipf D, Vernoud V (2014) Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamboa MC, Baltierra F, Leon G, Krauskopf E (2013) Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globules. Plant Physiol Biochem 73:99–105

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Gao Q, Duan XG, Yue GD, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Li JS, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Ge XJ, Yu Y, Yuan YM, Huang HW, Yan C (2005) Genetic diversity and geographic differentiation in endangered Ammopiptanthus populations in desert regions of northwest China as revealed by ISSR analysis. Ann Bot 95:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu LJ, Cheng HM (2014) Isolation, molecular cloning and characterization of a cold responsive gene, AmDUF1517, from Ammopiptanthus mongolicus. Plant Cell Tissue Organ Cult 117:201–211

    Article  CAS  Google Scholar 

  • Guan B, Hu YZ, Zeng YL, Wang Y, Zhang FC (2011) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38:1889–1899

    Article  CAS  PubMed  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Yan Y, Hou XW, He YZ, Wei YX, Yang GX, He GY, Peng M (2015) TaPP2C1, a group f 2 protein phosphatase 2c gene, confers resistance to salt stress in transgenic tobacco. PLoS One 10:e0129589

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarzyniak KM, Jasinski M (2014) Membrane transporters and drought resistance-acomplex issue. Front Plant Sci 5:687

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriegel A, Andres Z, Medzihradszky A, Kruger F, Scholl S, Delang S, Patir-Nebioglu MG, Gute G, Yang H, Murphy AS, Peer WA, Pfeiffer A, Krebs M, Lohmann JU, Schumacher K (2015) Job sharing in the endomembrane system: vacuolar acidification requires the combined activity of V-ATPase and V-PPase. Plant Cell 27:3383–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Jiang GQ, Huang P, Ma J, Zhang FC (2007) Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 90:41–48

    Article  CAS  Google Scholar 

  • Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46

    Article  CAS  Google Scholar 

  • Li P, Song A, Gao C, Wang L, Wang Y, Sun J, Jiang J, Chen F, Chen S (2015) Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep 34:1365–7138

    Article  CAS  PubMed  Google Scholar 

  • Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–403

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168(1):343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lv SL, Jiang P, Nie LL, Chen XY, Tai F, Wang D, Fan PX., Feng JJ, Bao H, Wang JH, Li YX. (2015) H+-pyrophosphatase from Salicornia europaea confers tolerance to simultaneously occurring salt stress and nitrogen deficiency in Arabidopsis and wheat. Plant cell Environ 38(11):2433–2449

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophy Acta 1465:37–51

    Article  CAS  Google Scholar 

  • Mansour MM (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800

    Article  CAS  PubMed  Google Scholar 

  • Meng XZ, Xu ZK, Song RT (2011) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase from Dunaliella viridis. Mol Biol Rep 38:3375–3382

    Article  CAS  PubMed  Google Scholar 

  • Ottow EA, Polle A, Brosche M, Kangasjarvi J, Dibrov P, Zorb C, Teichmann T (2005) Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol 58:75–88

    Article  CAS  PubMed  Google Scholar 

  • Paez-Valencia J, Patron-Soberano A, Rodriguez-Leviz A, Sanchez-Lares J, Sanchez-Gomez C, Valencia-Mayoral P, Diaz-Rosas G, Gaxiola R (2011) Plasma membrane localization of the type I H+-PPase AVP1 in sieve element-companion cell complexes from Arabidopsis thaliana. Plant Sci 181:23–30

    Article  CAS  PubMed  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fiber yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Wang J, Li K, Li Y, Li B, Gao F, Yang A (2012) Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS One 7:43501

    Article  Google Scholar 

  • Qin H, Gu Q, Kuppu S, Sun L, Zhu XL, Mishra N, Hu RB, Shen GX, Zhang JL, Zhang YZ, Zhu LF, Zhang XL, Burow M, Payton P, Zhang H (2013) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep 7:345–355

    Article  Google Scholar 

  • Rios G, Ferrando A, Serrano R (1997) Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13:515–528

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12:378–386

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segami S, Nakanishi Y, Sato MH, Maeshima M (2010) Quantification, organ-specific accumulation and intracellular localization of type II H+-pyrophosphatase in Arabidopsis thaliana. Plant Cell Physiol 51:1350–1360

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Shimizu N, Hosogi N, Hyon G-S, Jiang S, Inoue K, Park P (2006) Reactive oxygen species (ROS) generation and ROS-induced lipid peroxidation are associated with plasma membrane modification in host cell in response to AK-toxin I from Alternaria alternate Japanese pear pathotype. J Gen Plant Pathol 72:6–15

    Article  CAS  Google Scholar 

  • Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ (2005) Survey and protection for rare plant resource Ammopiptanthus nanus. Chin Wild Plant Res 24:41–42

    Google Scholar 

  • Wang W, Chen JJ, Li JN, Zhang YH, Shao ZY, Kuai BK (2007) Extraordinary accumulations of antioxidants in Ammopiptanthus mongolicus (Leguminosae) and Tetraena mongolica (Zygophyllaceae) distributed in extremely stressful environments. Bot Stud 48:55–61

    CAS  Google Scholar 

  • Wei Q, Guo YJ, Cao HM, Kuai BK (2011) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its heterologous expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 105:309–316

    Article  CAS  Google Scholar 

  • Wei Q, Hu P, Kuai BK (2012) Heterologous expression of an Ammopiptanthus mongolicus H+-pyrophosphatase gene enhances drought and salt tolerance in Arabidopsis. Plant Cell Tissue Organ Cult 10:359–369

    Article  Google Scholar 

  • Wu LJ, Zu XF, Zhang HM, Wu LC, ** ZY, Chen YH (2015) Overexpression of ZmMAPK1 enhances drought and heat stress in transgenic Arabidopsis thaliana. Plant Mol Biol 88:429–443

    Article  CAS  PubMed  Google Scholar 

  • **ong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HB, Zhang X, Gaxiola RA, Xu GH, Peer WA, Murphy AS (2014) Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J Exp Bot 12:3045–3053

    Article  Google Scholar 

  • Yang Y, Tang RJ, Li B, Wang HH, ** YL, Jiang CM, Bao Y, Su HY, Zhao N, Ma XJ, Yang L, Chen SL, Cheng XH, Zhang HX (2015) Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar. Tree Physiol 35:663–677

    Article  CAS  PubMed  Google Scholar 

  • Yu HQ, Wang YG, Yong TM, She YH, Fu FL, Li WC (2014) Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli. Gene 549:77–84

    Article  CAS  PubMed  Google Scholar 

  • Yu HQ, Zhang YY, Yong TM, Liu YP, Zhou SF, Fu FL, Li WC (2015) Cloning and functional validation of molybdenum cofactor sulfurase gene from Ammopiptanthus nanus. Plant Cell Rep 34:1165–1176

    Article  CAS  PubMed  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778

    Article  CAS  PubMed  Google Scholar 

  • Zhen RG, Kim EJ, Rea PA (1997) Acidic residues necessary for pyrophosphate-energized pum** and inhibition of the vacuolar H+-pyrophosphatase by N,N′-dicyclohexyl carbodiimide. J Biol Chem 272:22340–22348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Science and Technology Special Project (2014ZX08003-004) and the National Natural Science Foundation of China (31071433). The authors thank the technical support from the Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, and appreciate the anonymous reviewers for their critical comments and modification suggestions, and Mr. Aleix Martinez at University of California Berkeley for his help in improving the English writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Ling Fu or Wan Chen Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.Q., Han, N., Zhang, Y.Y. et al. Cloning and characterization of vacuolar H+-pyrophosphatase gene (AnVP1) from Ammopiptanthus nanus and its heterologous expression enhances osmotic tolerance in yeast and Arabidopsis thaliana . Plant Growth Regul 81, 385–397 (2017). https://doi.org/10.1007/s10725-016-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0215-6

Keywords

Navigation