Log in

Potential assessment of Chrysanthemum flowers from various cultivars as sources of natural antioxidants and bioactive compounds

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Chrysanthemum blossoms are renowned for their aesthetic appeal and have gained recognition as potential contributors to nutraceuticals, cosmeceuticals, and pharmaceuticals, benefitting human health. This study assessed 22 Indian Chrysanthemum cultivars for phytochemicals and antioxidants. This study also presents the first quantitative determination of total saponin content in Chrysanthemum morifolium. The phytochemical profiles categorized the cultivars into three groups by hierarchical cluster analysis. The correlations among biochemical compounds was established by statistical correlation analysis which underscored the importance of anthocyanins and phenolic compounds in antioxidative attributes of cultivars. Also, variation in carotenoid content unveiled astaxanthin, zeaxanthin, mutatochrome, canthaxanthin, neoxanthin, violaxanthin, and auroxanthin as potential biomarkers in differentiating cultivars. The cultivars viz., Bidhan Protima, Mauve Sarah, Silk Brocate, Diamond Jubilee, and Mahatma Gandhi displayed remarkable levels of phenolic compounds, tannins, saponins, and carotenoids, emphasizing their superior antioxidant capacity. The variety in the phytochemical composition including phenolic content (0.0008–0.0231 mg/g), flavonoid content (10–555 mg/g CE), anthocyanin content (0.3–65.4 mg/L), saponin content (5.5–15%), tannin content (4.13–66.5 mg/g TAE), carotenoid content (0.02027–0.07214 mg/g), alkaloid content (220–680 mg/ml) and antioxidant potential of the C. morifolium cultivars studied featured their potential as sources of bioactive compounds for various applications. The research elucidates the rich phytochemical diversity in Indian Chrysanthemum cultivars, establishing them as priceless assets for pharmaceutical and nutraceutical industries with potential advantages for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Abbreviations

CE:

Catechin equivalent

DE:

Dry extract

DPPH:

2,2-Diphenylpicrylhydrazyl

FRAP:

Ferric reducing ability of plasma

GAE:

Gallic acid equivalent

MY:

Malvidin-3-glucoside

TFC:

Total flavonoid content

TPC:

Total phenol content

Trolox:

6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

HCA:

Hierarchical cluster analysis

PCA:

Principal component analysis

PLS-DA:

Partial least squares-discriminant analysis

VIP:

Variable importance in projection

References

  • Al-Duais M, Müller L, Böhm V, Jetschke G (2009) Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: use of different assays. Eur Food Res Technol 228:813–821. https://doi.org/10.1007/s00217-008-0955-8

    Article  CAS  Google Scholar 

  • Alim-un-Nisa AUN, Sajila Hina SH, Sania Mazhar SM, Imran Kalim IK, Ijaz Ahmad IA, Naseem Zahra NZ, Maida Asif MA (2018) Stability of lutein content in color extracted from marigold flower and its application in candies. PJAR 31:15–23. https://doi.org/10.17582/journal.pjar/2018/31.1.15.23

    Article  Google Scholar 

  • Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis, and evolution of triterpenoid saponins. Phytochemistry 72(6):435–457

    Article  CAS  PubMed  Google Scholar 

  • Bahuguna A, Vijayalaxmi KG, Suvarna VC (2018) Formulation and evaluation of fresh red Hawaiian hibiscus (Hibiscus rosa-sinensis) incorporated valued added products. Int J Curr Microbiol App Sci 7(8):4282–4290

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: spectroscopy, vol 1B. Birkhäuser Verlag, Basel, pp 13–63

  • Bungihan ME, Matias CA (2013) Determination of the antioxidant, phytochemical and antibacterial profiles of flowers from selected ornamental plants in Nueva Vizcaya, Philippines. J Agric Sci Technol 3:833–841

  • Cao X, **ong X, Xu Z, Zeng Q, He S, Yuan Y, Wang Y, Yang X, Su D (2020) Comparison of phenolic substances and antioxidant activities in different varieties of Chrysanthemum flower under simulated tea making conditions. J Food Meas Charact 14:1443–1450. https://doi.org/10.1007/s11694-020-00472-4

    Article  Google Scholar 

  • Chen GL, Chen SG, **ao Y, Fu NL (2018) Antioxidant capacities and total phenolic contents of 30 flowers. Ind Crops Prod 111:430–445

    Article  CAS  Google Scholar 

  • Cheng W, Li J, You T, Hu C (2005) Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linne. J Ethnopharmacol 101(1–3):334–337. https://doi.org/10.1016/j.jep.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  • Chinese Pharmacopoeia Commission and others (2015) Chinese pharmacopoeia. China Medi Sci Press Bei**g China 1:191–193

    Google Scholar 

  • Coyago-Cruz E, Moya M, Méndez G, Villacís M, Rojas-Silva P, Corell M, Meléndez-Martínez AJ (2023) Exploring plants with flowers: from therapeutic nutritional benefits to innovative sustainable uses. Foods 12(22):4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Bai M, Sun Y, Abdel-Samie MAS, Lin L (2018) Antibacterial activity and mechanism of Chuzhou Chrysanthemum essential oil. J Funct Foods 48:159–166

    Article  CAS  Google Scholar 

  • Darras A (2021) Overview of the dynamic role of specialty cut flowers in the international cut flower market. Horticulturae 7(3):51

    Article  Google Scholar 

  • Debnath B, Uddin MJ, Patari P, Das M, Maiti D, Manna K (2015) Estimation of alkaloids and phenolics of five edible cucurbitaceous plants and their antibacterial activity International. J Pharm Sci 7(12):223–227

    CAS  Google Scholar 

  • Duh PD, Tu YY, Yen GC (1999) Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT-Food Sci Technol 32(5):269–277

    Article  CAS  Google Scholar 

  • Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):231–258

    Article  PubMed  Google Scholar 

  • Han AR, Nam B, Kim BR, Lee KC, Song BS, Kim SH, ** CH (2019) Phytochemical composition and antioxidant activities of two different color Chrysanthemum flower teas. Molecules 24(2):329

    Article  PubMed  PubMed Central  Google Scholar 

  • Haslam E (1998) Practical polyphenolics: from structure to molecular recognition and physiological action. Cambridge University Press, New York

    Google Scholar 

  • Hegde AS, Gupta S, Sharma S, Srivatsan V, Kumari P (2022) Edible rose flowers: a doorway to gastronomic and nutraceutical research. Food Res Int 162:111977

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Liu X, Zhao G, Hu T, Wang Y (2018) Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim Nutr 4(2):137–150

    Article  PubMed  Google Scholar 

  • Husain N, Kumar A (2015) Comparative study of phytochemical constituents in the flower of Wedelia trilobata, Achyranthes aspera, and Chrysanthemum from durg district of Chhattisgarh, India. Int J Curr Microbiol App Sci 4(4):150–156

    CAS  Google Scholar 

  • Jia N, Shu QY, Wang LS, Du H, Xu YJ, Liu ZA (2008) Analysis of petal anthocyanins to investigate coloration mechanism in herbaceous peony cultivars. Sci Hortic 117(2):167–173. https://doi.org/10.1016/j.scienta.2008.05.002

    Article  CAS  Google Scholar 

  • Kalia R (2015) Effect of different concentrations of auxins on the regeneration of Chrysanthemum morifolium plantlets. Int J Technol Res Appl 3:106–107

    Google Scholar 

  • Kamalambigeswari R, Jeyanthi Rebecca L (2016) Extraction of antioxidant lutein from various flowers. Inter J Pharm Sci Rev Res 39(1):122–124

    CAS  Google Scholar 

  • Kishimoto S, Ohmiya A (2006) Regulation of carotenoid biosynthesis in petals and leaves of Chrysanthemum (Chrysanthemum morifolium). Physiol Plant 128(3):436–447. https://doi.org/10.1111/j.1399-3054.2006.00773.x

    Article  CAS  Google Scholar 

  • Kumari P, Raju DVS, Prasad KV, Saha S, Panwar S, Paul S, Banyal N, Bains A, Chawla P, Fogarasi M, Fogarasi S (2022) Characterization of anthocyanins and their antioxidant activities in Indian rose varieties (rosa× hybrida) USING HPLC. Antioxidants 11(10):2032. https://doi.org/10.3390/antiox11102032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal M, Chandraker SK, Shukla R (2020) Antimicrobial properties of selected plants used in traditional Chinese medicine. In: Prakash Bhanu (ed) Functional and preservative properties of phytochemicals. Elsevier, Cambridge, pp 119–143

    Chapter  Google Scholar 

  • Lin LZ, Harnly JM (2010) Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem 120(1):319–326

    Article  CAS  Google Scholar 

  • Long T, Xu Y, Kong W, **ao WP, Xu LY (2022) Simultaneous determination and comparison of phenolic bioactives among three main kinds of edible chrysanthemums. J Chromatogr Sci 60(5):465–471

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Wako Y (2017) Evaluation of phenolic compounds and neurotrophic/neuroprotective activity of cultivar extracts derived from Chrysanthemum morifolium flowers. Food Sci Technol Res 23(3):457–467. https://doi.org/10.3136/fstr.23.457

    Article  CAS  Google Scholar 

  • Mahesh SK, Fathima J, Veena VG (2019) Cosmetic potential of natural products: industrial applications. In: Swamy Mallappa Kumara, Akhtar Mohd Sayeed (eds) Natural bio-active compounds. Springer, Singapore, pp 215–250

    Chapter  Google Scholar 

  • Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10(7):690–701

    Article  CAS  PubMed  Google Scholar 

  • Medini F, Fellah H, Ksouri R, Abdelly C (2014) Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J Taibah Univ Sci 8(3):216–224

    Article  Google Scholar 

  • Metibemu DS, Ogungbe IV (2022) Carotenoids in drug discovery and medicine: pathways and molecular targets implicated in human diseases. Molecules 27(18):6005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63(3):708–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumaran P, Saraswathy N, Aswitha V, Balan R, Gokhul VB, Indumathi P, Yuvapriya S (2016) Assessment of total phenolic, flavonoid, tannin content and phytochemical screening of leaf and flower extracts from Peltophorum pterocarpum (DC.) Backer ex K. Heyne: a comparative study. Pharmacogn J 8(2):140–143

    Article  CAS  Google Scholar 

  • Mutiah R, Marsyah A, Saputra AF (2021) Systematic review: phytochemical content and pharmacological effects of Chrysanthemum sp. PLANAR 1:31

    Article  Google Scholar 

  • Obadoni BO, Ochuko PO (2002) Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in edo and delta states of Nigeria. Glob J Pure Appl Sci 8(2):203–208

    CAS  Google Scholar 

  • Okuda T, Ito H (2011) Tannins of constant structure in medicinal and food plants hydrolyzable tannins and polyphenols related to tannins. Molecules 16(3):2191–2217

    Article  CAS  PubMed Central  Google Scholar 

  • Osbourn A, Goss RJ, Field RA (2011) The saponins–polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28(7):1261–1268. https://doi.org/10.1039/C1NP00004B

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Chae SC, Park SY, Kim JK, Kim YJ, Chung SO, Arasu MV, Al-Dhabi NA, Park SU (2015) Anthocyanin and carotenoid contents in different cultivars of Chrysanthemum(Dendranthema grandiflorum Ramat.) flower. Molecules 20(6):11090–11102. https://doi.org/10.3390/molecules200611090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires TC, Dias MI, Barros L, Calhelha RC, Alves MJ, Oliveira MBP, Santos-Buelga C, Ferreira IC (2018) Edible flowers as sources of phenolic compounds with bioactive potential. Food Res Int 105:580–588

    Article  CAS  PubMed  Google Scholar 

  • Polshettiwar SA, Ganjiwale RO, Wadher SJ, Yeole PG (2007) Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian J Pharm Sci 69(4):574–576

    Article  CAS  Google Scholar 

  • Qi LW, Wang CZ, Yuan CS (2011) Ginsenosides from american ginseng: chemical and pharmacological diversity. Phytochemistry 72:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjan R, Kumar M (2020) Qualitative and quantitative analysis of phytotochemicals in leaf extracts of Centella asiatica L. Nat Prod Chem Res 6:1–4

    Google Scholar 

  • Rapisarda P, Bellomo SE, Fabroni S, Russo G (2008) Juice quality of two new mandarin-like hybrids(Citrus clementina Hort. ex Tan x Citrus sinensis L. Osbeck) containing anthocyanins. J Agric Food Chem 56(6):2074–2078

    Article  CAS  PubMed  Google Scholar 

  • Ryu J, Nam B, Kim BR, Kim SH, Jo YD, Ahn JW, Kim JB, ** CH, Han AR (2019) Comparative analysis of phytochemical composition of gamma-irradiated mutant cultivars of Chrysanthemum morifolium. Molecules 24(16):3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem GA, Alamyel FB, Abushaala FA, Hussain MS, Abusheba H, Sahu RP (2019) Evaluation of the hepatoprotective, anti-inflammatory, antinociceptive and antiepileptic activities of Chrysanthemum trifurcatum. Biomed Pharmacother 117:109123

    Article  CAS  PubMed  Google Scholar 

  • Scalzo RL, Genna A, Branca F, Chedin M, Chassaigne H (2008) Anthocyanin composition of and its stability in relation to thermal treatments. Food Chem 107(1):136–144

    Article  Google Scholar 

  • Seisonen S, Vene K, Koppel K (2016) The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data. Food Chem 210:530–540. https://doi.org/10.1016/j.foodchem.2016.04.102

    Article  CAS  PubMed  Google Scholar 

  • Shahrajabian MH, Sun W, Zandi P, Cheng Q (2019) A review of Chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Appl Ecol Environ Res 17(6):13355–13369

    Article  Google Scholar 

  • Sharma N, Kumar M, Kumari N, Puri S, Rais N, Lorenzo JM (2023) Phytochemicals, therapeutic benefits and applications of Chrysanthemum flower: a review. Heliyon 9:e20232. https://doi.org/10.1016/j.heliyon.2023.e20232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparg S, Light ME, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94(2–3):219–243

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Igarashi K (2009) Cultivar variation in flavonoid components and radical scavenging activity of polyphenol fractions among edible chrysanthemum flowers. Nippon Shokuhin Kagaku Kogaku Kaishi J Jpn Soc Food Sci Technol 56(11):600–604

    Article  Google Scholar 

  • Suárez B, Álvarez ÁL, García YD, del Barrio G, Lobo AP, Parra F (2010) Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chem 120(1):339–342

  • Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959. https://doi.org/10.1007/s00299-007-0313-4

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x

    Article  CAS  PubMed  Google Scholar 

  • Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58(2):100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornthwaite JT, Thibado SP, Thornthwaite KA (2020) Bilberry anthocyanins as agents to address oxidative stress. In: Preedy Victor R (ed) Pathology. Elsevier, Netherlands, pp 179–187

    Chapter  Google Scholar 

  • Tian Z, Jia H, ** Y, Wang M, Kou J, Wang C, Rong X, **e X, Han G, Pang X (2019) Chrysanthemum extract attenuates hepatotoxicity via inhibiting oxidative stress in vivo and in vitro. Food Nutr Res. https://doi.org/10.29219/fnr.v63.1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Torras-Claveria L, Berkov S, Codina C, Viladomat F, Bastida J (2013) Daffodils as potential crops of galanthamine. Assessment of more than 100 ornamental varieties for their alkaloid content and acetylcholinesterase inhibitory activity. Ind Crops Prod 43:237–244

    Article  Google Scholar 

  • Wang F, Miao M, **a H, Yang LG, Wang SK, Sun GJ (2016) Antioxidant activities of aqueous extracts from 12 Chinese edible flowers in vitro and in vivo. Food Nutr Res 61(1):1265324

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang K, Bai ZY, Liang QY, Liu QL, Zhang L, Pan YZ, Liu GL, Jiang BB, Zhang F, Jia Y (2018) Transcriptome analysis of Chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genomics 19:1–19

    Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5(3):218–223. https://doi.org/10.1016/S1369-5266(02)00256-X

    Article  CAS  PubMed  Google Scholar 

  • Wu LY, Gao HZ, Wang XL, Ye JH, Lu JL, Liang YR (2010) Analysis of chemical composition of Chrysanthemum indicum flowers by GC/MS and HPLC. J Medi Plants Res 4(5):421–426

    CAS  Google Scholar 

  • Yazhen S, Wenju W, Panpan Z, Yuanyuan Y, Panpan D, Wusen Z, Yanling W (2019) Anthocyanins: Novel antioxidants in diseases prevention and human health. In: Badria Farid A, Ananga Anthony (eds) Flavonoids-a coloring model for cheering up life. IntechOpen, London, pp 1–16

    Google Scholar 

  • Yuan H, Jiang S, Liu Y, Daniyal M, Jian Y, Peng C et al (2020) The flower head of Chrysanthemum morifolium Ramat. (Juhua): a paradigm of flowers serving as Chinese dietary herbal medicine. J Ethnopharmacol 261:113043

    Article  CAS  PubMed  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the DG ICAR & Secretary DARE, New Delhi, India DDG (HS) ICAR, New Delhi ADG (HS) ICAR, New Delhi India and Director, ICAR-NRCG, Pune India, for financial and research support. The authors whose work formed the basis for this work and anonymous reviewers for critically reviewing and suggestions are also acknowledged.

Funding

Institute funded.

Author information

Authors and Affiliations

Authors

Contributions

Patil SA: Methodology, Formal analysis, Writing—original draft. Kulkarni AJ: Writing—original draft Writing—review and editing and data analysis. Jadhav PR: Formal analysis, Investigation, Writing—editing. Yadav RS: Methodology. Pagariaya MC: data analysis and editing of draft. Saha TN: Resources. Shabeer ATP: Validation and editing. Sarode DK: Methodology. Sharma AK: Validation and editing Prasad KV: Resources, Supervision. Kawar PG: Methodology, Formal analysis, Writing—review and final editing; Supervision & coordination.

Corresponding author

Correspondence to P. G. Kawar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.A., Kulkarni, A.J., Jadhav, P.R. et al. Potential assessment of Chrysanthemum flowers from various cultivars as sources of natural antioxidants and bioactive compounds. Genet Resour Crop Evol (2024). https://doi.org/10.1007/s10722-024-02035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-024-02035-x

Keywords

Navigation