Log in

New exact solutions, thermodynamics and phase transition in the Einstein–Maxwell-dilaton theory

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

For the \((n+1)\)-dimensional (\(n\ge 3\)) dilaton black hole in the Einstein–Maxwell-dilaton theory, we have presented exact analytical solutions of the field equations. These exact solutions include the exact formula of the potential function as well as the exact formula of the metric function. The presence of the dilaton field makes the asymptotic behavior of these black holes no longer flat or anti-de Sitter. We have calculated the electric charge, mass, temperature, entropy and electric potential of these black holes and have shown the correctness of the first law of black hole thermodynamics. As a thermodynamic system, we have analyzed thermal stability of these types of black holes using the canonical ensemble method and, investigated the effect of dilaton field on their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study

References

  1. Bekenstein, J.D.: Contemp. Phys. 45, 31 (2004)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: ar**v:1509.01147v1 [hep-th] (2015). Phys. Rev. D 13, 191 (1976)

  3. Bekenstein, J.D.: Scholarpedia, 3 (2008) 7375. Phys. Rev. D 7, 2333 (1973)

  4. Custodio, P.S., Horvath, J.E.: Am. J. Phys. 71, 1237 (2003)

    Article  ADS  Google Scholar 

  5. Opatrny, T., Richterek, L.: Am. J. Phys. 80, 66 (2011)

    Article  ADS  Google Scholar 

  6. Wald, R.M.: Living Rev. Relat. 4, 6 (2001)

    Article  ADS  Google Scholar 

  7. Wallace, D.: Entropy 16, 699725 (2014)

    Article  Google Scholar 

  8. Hendi, S.H., Eslam Panah, B., Panahiyan, S., Momennia, M.: Eur. Phys. J. C 75, 507 (2015)

    Article  ADS  Google Scholar 

  9. Dehghani, M.: Phys. Rev. D 106, 084019 (2022)

    Article  ADS  Google Scholar 

  10. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 77, 026007 (2008)

    Article  ADS  Google Scholar 

  12. De Felice, A., Tsujikawa, S.: Living Rev. Relat. 13, 1 (2010)

    Article  ADS  Google Scholar 

  13. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  14. Bihan, L.B.: Euro. J. Phil. Sci. 10, 17 (2020)

    Article  Google Scholar 

  15. Dehghani, M.: Eur. Phys. J. Plus 134, 426 (2019)

    Article  Google Scholar 

  16. Sheykhi, A., Hendi, S.H.: Phys. Rev. D 90, 044028 (2014)

    Article  ADS  Google Scholar 

  17. Dvali, G., Gabadadze, G.: Phys. Rev. D 63, 065007 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Sheykhi, A.: Phys. Rev. D 76, 023515 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dehghani, M., Setare, M.R.: Phys. Rev. D 100, 044022 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hajkhalili, S., Sheykhi, A.: Phys. Rev. D 89, 104019 (2014)

    Article  ADS  Google Scholar 

  21. Dehghani, M.: Int. J. Mod. Phys. D 27, 1850073 (2018)

    Article  ADS  Google Scholar 

  22. Hirschmann, E.W., Lehner, L., Liebling, S.L., Palenzuela, C.: Phys. Rev. D 97, 064032 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Charmousis, C.: Class. Quantum Grav. 19, 83 (2002)

    Article  ADS  Google Scholar 

  24. Richarte, M.G., Martins, E.L., Fabris, J.C.: ar**v:2111.01595 [gr-qc], (2021)

  25. Sheykhi, A., Dehghani, M.H., Kord Zangeneh, M.: Eur. Phys. J. C 75, 497 (2015)

    Article  ADS  Google Scholar 

  26. Dehghani, M.: Prog. Theor. Exp. Phys., 2023 (2023) ptad128

  27. Kord Zangeneh, M., Dehghani, M.H., Sheykhi, A.: Phys. Rev. D 92, 104035 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hendi, S.H., Eslam Panah, B., Panahiyan, Sh.: Eur. Phys. J. C 77, 133 (2017)

    Article  ADS  Google Scholar 

  29. Dehghani, M.: Phys. Rev. D 97, 044030 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Dehghani, M.: Phys. Rev. D 99, 104036 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Dehghani, M., Hamidi, S.F.: Phys. Rev. D 96, 104017 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Kord Zangeneh, M., Sheykhi, A., Dehghani, M.H.: Phys. Rev. D 91, 044035 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Dehghani, M.: Phys. Lett. B 749, 125 (2015)

    Article  ADS  Google Scholar 

  34. Hendi, S.H., Katebi, R.: Eur. Phys. J. C 72, 2235 (2012)

    Article  ADS  Google Scholar 

  35. Eslam Panah, B., Hendi, S.H., Panahiyan, Sh., Hassaine, M.: Phys. Rev. D 98, 084006 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Hawking, S.W., Hunter, C.J.: Phys. Rev. D 59, 044025 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  37. Dehghani, M.: Prog. Theor. Exp. Phys., 2023 (2023) ptad033

  38. Cvetic, M., Gubser, S.S.: JHEP 04, 024 (1999)

    Article  ADS  Google Scholar 

  39. Hendi, S.H., Sheykhi, A., Panahiyan, S., Eslam Panah, B.: Phys. Rev. D 92, 064028 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Dehghani, M.: Eur. Phys. J. C 83, 987 (2023)

    Article  ADS  Google Scholar 

  41. Hendi, S.H., Panahiyan, S., Eslam Panah, B., Momennia, M.: Eur. Phys. J. C 75, 507 (2015)

    Article  ADS  Google Scholar 

  42. Hendi, S.H., Ramezani-Arani, R., Rahimi, E.: Eur. Phys. J. C 79, 472 (2019)

    Article  ADS  Google Scholar 

  43. Dehghani, M.: Int. J. Mod. Phys. A 38, 2350063 (2023)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript and wrote the main manuscript.

Corresponding author

Correspondence to R. Baghbani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: details of derivation of Eq.(12)

In order to prove the non-independence of Eqs. (8), (9) and (II.10), we start by differentiating Eq. (10) with respect to r:

$$\begin{aligned} \frac{dE_{\theta \theta }}{dr}= & {} (n-1)f''\left( \frac{1}{r}+\frac{R'}{R}\right) +(n-1)f'\nonumber \\{} & {} \quad \left[ \frac{n-3}{r^{2}} +(n-3)\left( \frac{R'}{R}\right) ^{2}+2(n-1)\frac{R'}{rR}+2\frac{R''}{R}\right] \nonumber \\{} & {} \quad +(n-1)f\left\{ -\frac{2(n-2)}{r^{3}}+2(n-2)\left[ \frac{R'R''}{R^{2}}-\left( \frac{R'}{R}\right) ^{3}\right] \right. \nonumber \\{} & {} \left. \quad +\frac{2(n-1)}{r}\left[ \frac{R''}{R}-\frac{R'}{rR}-\left( \frac{R'}{R}\right) ^{2}\right] -\frac{R'R''}{R^{2}}+\frac{R'''}{R}\right\} \nonumber \\{} & {} \quad +\frac{2(n-1)(n-2)}{r^{2}R^{2}}\left( \frac{1}{r}+\frac{R'}{R}\right) +\frac{d}{dr}\left[ V(\phi )+2F_{tr}^{2}e^{-\frac{4\alpha \phi }{n-1}}\right] . \end{aligned}$$
(A.1)

On the other hand, according to Eq. (7), we can write \(2F_{tr}^{2}e^{-\frac{4\alpha \phi }{n-1}}=2q^{2}\frac{e^{\frac{4\alpha \phi }{n-1}}}{(rR)^{2(n-1)}}\) which leads to

$$\begin{aligned} \frac{d}{dr}\left( 2F_{tr}^{2}e^{-\frac{4\alpha \phi }{n-1}}\right) = \left[ \frac{4\alpha \phi '}{n-1}-2(n-1)\left( \frac{1}{r}+\frac{R'}{R}\right) \right] \left( 2F_{tr}^{2}e^{-\frac{4\alpha \phi }{n-1}}\right) . \end{aligned}$$
(A.2)

It is also obtained from the (II.3) and (II.9) that

$$\begin{aligned} \phi '^{2}\equiv \left( \frac{d\phi }{dr}\right) ^{2}=-\left( \frac{n-1}{2}\right) ^{2}\left( \frac{R''}{R}+2\frac{R'}{rR}\right) \end{aligned}$$
(A.3)

and

$$\begin{aligned}{} & {} \frac{d}{dr}V(\phi )\equiv \phi '\frac{dV}{d\phi } \nonumber \\{} & {} \quad =-2(n-1)^{2}f\left( \frac{1}{r}+\frac{R'}{R}\right) \left( \frac{R''}{R}+2\frac{R'}{rR}\right) -\frac{4\alpha \phi '}{n-1}\left( 2F_{tr}^{2}e^{-\frac{4\alpha \phi }{n-1}}\right) \nonumber \\{} & {} \quad -2(n-1)f\left[ \frac{R'''}{R}-\frac{R'R''}{R^{2}}+2\frac{R''}{rR}-2\frac{R'}{rR}\left( \frac{1}{r}+\frac{R'}{R}\right) \right] \nonumber \\{} & {} \quad -2(n-1)f'\left( \frac{R''}{R}+2\frac{R'}{rR}\right) . \end{aligned}$$
(A.4)

The point is that, it is possible to replace \(f''\) from Eq. (8):

$$\begin{aligned}{} & {} (n-1)f''\left( \frac{1}{r}+\frac{R'}{R}\right) \nonumber \\{} & {} \quad =(n-1)\left( \frac{1}{r}+\frac{R'}{R}\right) \nonumber \\{} & {} \quad \left\{ E_{tt}-(n-1)f'\left( \frac{1}{r} +\frac{R'}{R}\right) -\frac{2}{n-1}V(\phi )+4\left( \frac{n-2}{n-1}\right) F_{tr}^{2}e^{-\frac{4\alpha \phi }{n-1}}\right\} \end{aligned}$$
(A.5)

As a result, with a little calculation and simplification, we can write

$$\begin{aligned} \frac{dE_{\theta \theta }}{dr}- & {} \left( \frac{1}{r}+\frac{R'}{R}\right) (n-1)E_{tt}=-2(n-1)f'\left( \frac{1}{r}+\frac{R'}{R}\right) +2\left( \frac{1}{r}+\frac{R'}{R}\right) \frac{(n-1)(n-2)}{r^{2}R^{2}} \\{} & {} \quad -2(n-1)f\left( \frac{1}{r}+\frac{R'}{R}\right) \left[ \frac{n-2}{r^{2}}+(n-2)\left( \frac{R'}{R}\right) ^{2}+2(n-1)\frac{R'}{rR}+\frac{R''}{R}\right] \\{} & {} \quad -2\left( \frac{1}{r}+\frac{R'}{R}\right) \left( 2F_{tr}^{2}e^{-\frac{4\alpha \phi }{n-1}}\right) -2\left( \frac{1}{r}+\frac{R'}{R}\right) V(\phi ) \\{} & {} \quad =-2\left( \frac{1}{r}+\frac{R'}{R}\right) E_{\theta \theta }. \end{aligned}$$

Appendix B: details of derivation of Eq. (31)

To calculate the mass of the black hole, we use the following method. First, it is necessary to write the black hole metric in the new form below

$$\begin{aligned} ds^2=-\chi ^{2}(\rho )dt^{2}+\frac{1}{W^{2}(\rho )}d\rho ^{2}+\rho ^{2}h_{ij}dx^{i}dx^{j}. \end{aligned}$$
(B.1)

where \(\rho =rR(r)\). From the comparison with the original metric, it follows that \(\chi ^{2}(\rho )=f(r)\) and \(W^{2}(\rho )=(N+1)^{2}R^{2}f(r)\). The quasi-local mass of the black hole is defined according to the following relation:

$$\begin{aligned} \mathcal {M}=\frac{(n-1)\omega _{n-1}}{8\pi }\rho ^{n-2}\chi (\rho )\left[ W_{0}(\rho )-W(\rho )\right] , \end{aligned}$$
(B.2)

where \(W_{0}\equiv W(m=0)\). In the following, it is better to write f(r) in the appropriate form below

$$\begin{aligned} f(r)=-\frac{m}{r^{(n-1)(N+1)-1}}+u(r), \;\;\;\text{: }\;\;\;\;\;\;\; N\ne -\frac{1}{2} \end{aligned}$$
(B.3)

where \(u(r)=Ar^{-2N}+Br^{2(N+1)}+Cr^{-2[(n-1+\alpha \varepsilon )(N+1)-1]}\) which is expressed based on Eq. (20). We pay attention that according to the interval defined for N as \(-1< N\le 0\), whether by choosing \(-1<N<-\frac{1}{2}\) or \(-\frac{1}{2}<N\le 0\), at the limit \(r\rightarrow \infty \) one term has a constant value and the other term diverges. The third term also becomes zero in any case, and therefore the total limit of the fraction will be zero. According to these points, it can be stated that

$$\begin{aligned} \mathcal {M}{} & {} =\frac{(n-1)(N+1)\omega _{n-1}r_{+}^{(n-1)(N+1)-1}}{8\pi r_{0}^{(n-1)N}}\Bigg [u(r)\left( 1-\frac{m}{u(r)r^{(n-1)(N+1)-1}}\right) ^{\frac{1}{2}}\nonumber \\{} & {} \quad - u(r)+\frac{m}{r^{(n-1)(N+1)-1}}\Bigg ].\end{aligned}$$
(B.4)

Now, one can obtain the black hole mass M, by calculating the limit of \(\mathcal {M}\) as r goes to infinity. Since, for the allowed values of N,

$$\begin{aligned} \lim _{r\rightarrow \infty } \frac{m}{u(r)r^{(n-1)(N+1)-1}}=0,\end{aligned}$$
(B.5)

we can write

$$\begin{aligned} M=\lim _{r_{+}\rightarrow \infty } \mathcal {M}=\frac{(n-1)(N+1)\omega _{n-1}}{16\pi r_{0}^{(n-1)N}}m,\;\;\;\text{: }\;\;\;\;\;\;\; N\ne -\frac{1}{2}. \end{aligned}$$
(B.6)

Also, noting Eq. (20), we can write

$$\begin{aligned} f(r)=-\frac{m}{r^{\frac{(n-3)}{2}}}+v(r),\;\;\;\text{: }\;\;\;\;\; N=-\frac{1}{2} \end{aligned}$$
(B.7)

where \(v(r)=B_1\frac{r}{r_{0}}\left[ \ln \left( \frac{b}{r}\right) +\frac{n+1}{n-1}\right] +B_2\frac{r}{b}+B_3r^{-(n-3+\alpha )}\) which is written according to the second rule of Eq. (20). As with the calculations related to the previous state, we can also write here

$$\begin{aligned} \mathcal {M}=\frac{(n-1)\omega _{n-1}r_{0}^{\frac{n-1}{2}}r^{\frac{n-3}{2}}}{16\pi }\left[ v(r)\left( 1-\frac{m}{v(r)r^{\frac{n-3}{2}}}\right) ^{\frac{1}{2}} -v(r)+mr^{-\frac{n-3}{2}}\right] , \qquad \end{aligned}$$
(B.8)

which in turn will lead to

$$\begin{aligned} M=\lim _{r_{+}\rightarrow \infty } \mathcal {M}=\frac{(n-1)r_{0}^{\frac{n-1}{2}}\omega _{n-1}}{32\pi }m \;\;\;\text{: }\;\;\;\;\;\;\; N=-\frac{1}{2}. \end{aligned}$$
(B.9)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghbani, R., Dehghani, M. New exact solutions, thermodynamics and phase transition in the Einstein–Maxwell-dilaton theory. Gen Relativ Gravit 56, 77 (2024). https://doi.org/10.1007/s10714-024-03266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03266-0

Keywords

Navigation