Log in

Spherical orbits around Kerr–Newman and Ghosh black holes

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We conduct a comprehensive study on spherical orbits around two types of black holes: Kerr–Newman black holes, which are charged, and Ghosh black holes, which are nonsingular. In this work, we consider both null and timelike cases of orbits. Utilizing the Mino formalism, all analytical solutions for the geodesics governing these orbits can be obtained. It turns out that all spherical photon orbits outside the black hole horizons are unstable. In the extremal cases of both models, we obtain the photon boomerangs. The existence of charge in the Kerr–Newman allows the orbits to transition between retrograde and prograde motions, and its increase tends to force the orbits to be more equatorial. On the other hand, the Ghosh black hole, characterized by a regular core and a lack of horizons in certain conditions, presents the possibility of observable stable spherical orbits in the so-called no-horizon condition. As the Ghosh parameter k increases, trajectories tend to exhibit larger latitudinal oscillation amplitudes. We observe that as the Ghosh parameter k increases the trajectories tend to have larger latitudinal oscillation amplitudes. Finally, we investigate the existence of innermost stable spherical orbits (ISSOs). Both black holes demonstrate the appearance of two branches of ISSO radii as a function of the Carter constant \({\mathcal {C}}\). However, there are notable differences in their behavior: in the case of the Kerr–Newman black hole, the branches merge at a critical value, beyond which no ISSO exists, while for the Ghosh black hole, the transcendental nature of the metric function causes the branches to become complex at some finite distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Akiyama, K., et al.: [Event Horizon Telescope], “First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019). ar**v:1906.11238 [astro-ph.GA]

  2. Akiyama, K., et al.: [Event Horizon Telescope], First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys. J. Lett. 930(2), L12 (2022). ar**v:2311.08680 [astro-ph.HE]. J. P. Luminet

  3. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  4. Newman, E.T., Couch, R., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ghosh, S. G., Afrin, M.: An upper limit on the charge of the black hole Sgr A* from EHT observations. Astrophys. J. 944(2), 174 (2023). ar**v:2206.02488 [gr-qc]

  6. Vagnozzi, S., Roy, R., Tsai, Y.D., Visinelli, L., Afrin, M., Allahyari, A., Bambhaniya, P., Dey, D., Ghosh, S.G., Joshi, P.S., et al.: Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Class. Quantum Gravity 40(16), 165007 (2023). ar**v:2205.07787 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  7. Uniyal, A., Pantig, R.C., Övgün, A.: Probing a non-linear electrodynamics black hole with thin accretion disk, shadow, and deflection angle with M87* and Sgr A* from EHT. Phys. Dark Univ. 40, 101178 (2023). ar**v:2205.11072 [gr-qc]

    Article  Google Scholar 

  8. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  Google Scholar 

  9. Johnston, M., Ruffini, R.: Generalized Wilkins effect and selected orbits in a Kerr–Newman geometry. Phys. Rev. D 10, 2324–2329 (1974)

    Article  ADS  Google Scholar 

  10. Stuchlik, Z.: The radial motion of photons in Kerr metric. Bull. Astron. Inst. Czechosl. 32(1981), 40–52 (1981)

    ADS  MathSciNet  Google Scholar 

  11. Calvani, M., De Felice, F., Nobili, L.: Photon trajectories in the Kerr–Newman metric. J. Phys. A 13, 3213–3219 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. Goldstein, H.: Numerical calculation of bound geodesics in the Kerr metric. Z. Phys. 271, 275–279 (1974)

    Article  ADS  Google Scholar 

  13. Mino, Y.: Perturbative approach to an orbital evolution around a supermassive black hole. Phys. Rev. D 67, 084027 (2003). ar**v:gr-qc/0302075 [gr-qc]

    Article  ADS  Google Scholar 

  14. Fujita, R., Hikida, W.: Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class. Quantum Gravity 26, 135002 (2009). ar**v:0906.1420 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. Battista, E., Esposito, G.: Geodesic motion in Euclidean Schwarzschild geometry. Eur. Phys. J. C 82(12), 1088 (2022). ar**v:2202.03763 [gr-qc]

    Article  ADS  Google Scholar 

  16. Hackmann, E., Lammerzahl, C., Kagramanova, V., Kunz, J.: Analytical solution of the geodesic equation in Kerr-(anti) de Sitter space–times. Phys. Rev. D 81, 044020 (2010). ar**v:1009.6117 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  17. Hackmann, E., Xu, H.: Charged particle motion in Kerr–Newmann space–times. Phys. Rev. D 87(12), 124030 (2013). ar**v:1304.2142 [gr-qc]

    Article  ADS  Google Scholar 

  18. Lämmerzahl, C., Hackmann, E.: Analytical solutions for geodesic equation in black hole spacetimes. Springer Proc. Phys. 170, 43–51 (2016). ar**v:1506.01572 [gr-qc]

    Article  Google Scholar 

  19. Wang, C.Y., Lee, D.S., Lin, C.Y.: Null and timelike geodesics in the Kerr–Newman black hole exterior. Phys. Rev. D 106(8), 084048 (2022). ar**v:2208.11906 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  20. Teo, E.: Spherical photon orbits around a Kerr black hole. Gen. Relativ. Gravit 35, 1909 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. Teo, E.: Spherical orbits around a Kerr black hole. Gen. Relativ. Gravit 53(1), 10 (2021). ar**v:2007.04022 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  22. Grossman, R., Levin, J., Perez-Giz, G.: The harmonic structure of generic Kerr orbits. Phys. Rev. D 85, 023012 (2012). ar**v:1105.5811 [gr-qc]

    Article  ADS  Google Scholar 

  23. Tavlayan, A., Tekin, B.: Exact formulas for spherical photon orbits around Kerr black holes. Phys. Rev. D 102(10), 104036 (2020). ar**v:2009.07012 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  24. Tavlayan, A., Tekin, B.: Radii of spherical timelike orbits around Kerr black holes. Phys. Rev. D 104(12), 124059 (2021). ar**v:2110.13070 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  25. Hod, S.: Marginally bound (critical) geodesics of rapidly rotating black holes. Phys. Rev. D 88(8), 087502 (2013). ar**v:1707.05680 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  26. Page, D.N.: Photon boomerang in a nearly extreme Kerr metric. Class. Quantum Gravity 39(13), 135015 (2022). ar**v:2106.13262 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  27. Anjum, A., Afrin, M., Ghosh, S.G.: Investigating effects of dark matter on photon orbits and black hole shadows. Phys. Dark Univ. 40, 101195 (2023)

    Article  Google Scholar 

  28. Das, A., Saha, A., Gangopadhyay, S.: Investigation of circular geodesics in a rotating charged black hole in the presence of perfect fluid dark matter. Class. Quantum Gravity 38(6), 065015 (2021). ar**v:2009.03644 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  29. Atamurotov, F., Abdujabbarov, A., Han, W.B.: Effect of plasma on gravitational lensing by a Schwarzschild black hole immersed in perfect fluid dark matter. Phys. Rev. D 104(8), 084015 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  30. Atamurotov, F., Papnoi, U., Jusufi, K.: Shadow and deflection angle of charged rotating black hole surrounded by perfect fluid dark matter. Class. Quantum Gravity 39(2), 025014 (2022). ar**v:2104.14898 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  31. Das, A., Saha, A., Gangopadhyay, S.: Study of circular geodesics and shadow of rotating charged black hole surrounded by perfect fluid dark matter immersed in plasma. Class. Quantum Gravity 39(7), 075005 (2022). ar**v:2110.11704 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  32. Narzilloev, B., Rayimbaev, J., Shaymatov, S., Abdujabbarov, A., Ahmedov, B., Bambi, C.: Dynamics of test particles around a Bardeen black hole surrounded by perfect fluid dark matter. Phys. Rev. D 102(10), 104062 (2020). ar**v:2011.06148 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  33. Sakharov, A.D.: Nachal’naia stadija rasshirenija Vselennoj i vozniknovenije neodnorodnosti raspredelenija veshchestva (Initial stage of an expanding universe and appearence of a nonuniform distribution of matter). Sov. Phys. JETP 22, 241 (1966)

    ADS  Google Scholar 

  34. Bardeen, J.: Non-singular general-relativistic gravitational collapse. Proc. Int. Conf. GR5, Tbilisi 174 (1968)

  35. Ayon-Beato, E., Garcia, A.: Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 80, 5056–5059 (1998). ar**v:gr-qc/9911046 [gr-qc]

    Article  ADS  Google Scholar 

  36. Ayon-Beato, E., Garcia, A.: The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 493, 149–152 (2000). ar**v:gr-qc/0009077 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  37. Ansoldi, S.: Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources (2008). ar**v:0802.0330 [gr-qc]

  38. Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329–334 (2013). ar**v:1302.6075 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  39. Toshmatov, B., Ahmedov, B., Abdujabbarov, A., Stuchlik, Z.: Rotating regular black hole solution. Phys. Rev. D 89(10), 104017 (2014). ar**v:1404.6443 [gr-qc]

    Article  ADS  Google Scholar 

  40. Ghosh, S.G.: A nonsingular rotating black hole. Eur. Phys. J. C 75(11), 532 (2015). ar**v:1408.5668 [gr-qc]

    Article  ADS  Google Scholar 

  41. Amir, M., Ghosh, S.G.: Shapes of rotating nonsingular black hole shadows. Phys. Rev. D 94(2), 024054 (2016). ar**v:1603.06382 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  42. Kumar, R., Kumar, A., Ghosh, S.G.: Testing rotating regular metrics as candidates for astrophysical black holes. Astrophys. J. 896(1), 89 (2020). ar**v:2006.09869 [gr-qc]

    Article  ADS  Google Scholar 

  43. Kumar, A., Ghosh, S.G., Maharaj, S.D.: Nonsingular black hole chemistry. Phys. Dark Univ. 30, 100634 (2020). ar**v:2106.15925 [gr-qc]

    Article  Google Scholar 

  44. Kumar, R., Ghosh, S.G.: Photon ring structure of rotating regular black holes and no-horizon spacetimes. Class. Quantum Gravity 38(8), 8 (2021). ar**v:2004.07501 [gr-qc]

    Article  MathSciNet  Google Scholar 

  45. Wilkins, D. C.: Bound geodesics in the Kerr Metric. Phys. Rev. D 5, 814–822 (1972), 196 citations counted in INSPIRE as of 02 May 2023

  46. Gradshteyn, I. S., Ryzhik, I. M.: Jeffrey, A. (eds): Table of Integrals, Series, and Products, 5th edn. Academic Press, London (1994)

  47. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972)

    Article  ADS  Google Scholar 

  48. Druart, A.: The motion of test bodies around Kerr black holes (2023). ar**v:2307.02589 [gr-qc]

  49. Balart, L., Vagenas, E.C.: Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 90(12), 124045 (2014). ar**v:1408.0306 [gr-qc]

    Article  ADS  Google Scholar 

  50. Culetu, H.: On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 54(8), 2855–2863 (2015). ar**v:1408.3334 [gr-qc]

    Article  MathSciNet  Google Scholar 

  51. Newman, E.T., Janis, A.I.: Note on the Kerr spinning particle metric. J. Math. Phys. 6, 915–917 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  52. Ramadhan, H.S., Ishlah, M.F., Pratama, F.P., Alfredo, I.: Strong lensing and shadow of Ayon–Beato–Garcia (ABG) nonsingular black hole. Eur. Phys. J. C 83(6), 465 (2023). ar**v:2303.10921 [gr-qc]

    Article  ADS  Google Scholar 

  53. Mazur, P.O., Mottola, E.: Gravitational vacuum condensate stars. Proc. Nat. Acad. Sci. 101, 9545–9550 (2004). ar**v:gr-qc/0407075 [gr-qc]

    Article  ADS  Google Scholar 

  54. Mazur, P.O., Mottola, E.: Gravitational condensate stars: an alternative to black holes. Universe 9(2), 88 (2023). ar**v:gr-qc/0109035 [gr-qc]

    Article  ADS  Google Scholar 

  55. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Geodesically complete black holes. Phys. Rev. D 101, 084047 (2020). ar**v:1911.11200 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  56. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: A connection between regular black holes and horizonless ultracompact stars. JHEP 08, 046 (2023). ar**v:2211.05817 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  57. Cadoni, M., Oi, M., Sanna, A.P.: Effective models of nonsingular quantum black holes. Phys. Rev. D 106(2), 024030 (2022). ar**v:2204.09444 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  58. Charbulák, D., Stuchlík, Z.: Spherical photon orbits in the field of Kerr naked singularities. Eur. Phys. J. C 78(11), 879 (2018). ar**v:1811.02648 [gr-qc]

    Article  ADS  Google Scholar 

  59. Charbulák, D., Stuchlík, Z.: Eur. Phys. J. C 77(12), 897 (2017). https://doi.org/10.1140/epjc/s10052-017-5401-9. ar**v:1702.07850 [gr-qc]

    Article  ADS  Google Scholar 

  60. Nguyen, B., Christian, P., Chan, C. K.: Shadow geometry of Kerr naked singularities. Astrophys. J. 954(1), 78 (2023). ar**v:2302.08094 [astro-ph.HE]

  61. Gimon, E.G., Horava, P.: Astrophysical violations of the Kerr bound as a possible signature of string theory. Phys. Lett. B 672, 299–302 (2009). ar**v:0706.2873 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  62. Hadar, S., Johnson, M.D., Lupsasca, A., Wong, G.N.: Photon ring autocorrelations. Phys. Rev. D 103(10), 104038 (2021). ar**v:2010.03683 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  63. Levin, J., Perez-Giz, G.: Homoclinic orbits around spinning black holes. I. Exact solution for the Kerr separatrix. Phys. Rev. D 79, 124013 (2009). ar**v:0811.3814 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  64. Li, Y.T., Wang, C.Y., Lee, D.S., Lin, C.Y.: Homoclinic orbits in Kerr–Newman black holes. Phys. Rev. D 108(4), 044010 (2023). ar**v:2302.09471 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  65. Ryan, F.D.: Effect of gravitational radiation reaction on circular orbits around a spinning black hole. Phys. Rev. D 52, R3159–R3162 (1995). ar**v:gr-qc/9506023 [gr-qc]

    Article  ADS  Google Scholar 

  66. Barack, L., Cutler, C.: Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D 75, 042003 (2007). ar**v:gr-qc/0612029 [gr-qc]

    Article  ADS  Google Scholar 

  67. Amaro-Seoane, P., Gair, J.R., Pound, A., Hughes, S.A., Sopuerta, C.F.: Research update on extreme-mass-ratio inspirals. J. Phys.: Conf. Ser. 610(1), 012002 (2015). ar**v:1410.0958 [astro-ph.CO]

    Google Scholar 

  68. Kraniotis, G.V.: Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries. Eur. Phys. J. C 81(2), 147 (2021). ar**v:1912.10320 [gr-qc]

    Article  ADS  Google Scholar 

  69. Jai-akson, P., Chatrabhuti, A., Evnin, O., Lehner, L.: Black hole merger estimates in Einstein–Maxwell and Einstein–Maxwell–Dilaton gravity. Phys. Rev. D 96(4), 044031 (2017). ar**v:1706.06519 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  70. Tsukamoto, N., Li, Z., Bambi, C.: Constraining the spin and the deformation parameters from the black hole shadow. JCAP 06, 043 (2014). ar**v:1403.0371 [gr-qc]

    Article  ADS  Google Scholar 

  71. Tsukamoto, N.: Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: the Kerr–Newman and rotating regular black holes. Phys. Rev. D 97(6), 064021 (2018). ar**v:1708.07427 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Edward Teo for the discussion on his analytical spherical orbit solutions. We also thank Leonardo B. Putra for the discussion on ISSO. BNJ is supported by the Second Century Fund (C2F), Chulalongkorn University, Thailand. HSR is funded by the Hibah Riset FMIPA UI No. PKS-026/UN2.F3.D/PPM.00.02/2023.

Author information

Authors and Affiliations

Authors

Contributions

L.C.A. worked on the solutions and figures for regular black holes. A.S.A. worked on the solutions and figures for Kerr–Newman black holes, as well as hel** revising the manuscript. B.N.J. helped with the Kerr–Newman calculations and editing the manuscript text. H.S.R. conceived the idea for the research topic, helped with the Kerr–Newman and regular black holes calculations, and wrote the main manuscript text. All authors reviewed the manuscript and agreed prior to submission.

Corresponding author

Correspondence to H. S. Ramadhan.

Ethics declarations

Conflict of interest

All authors hereby declare that we do not have any Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, A.S., Andaru, L.C., Jayawiguna, B.N. et al. Spherical orbits around Kerr–Newman and Ghosh black holes. Gen Relativ Gravit 56, 79 (2024). https://doi.org/10.1007/s10714-024-03264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03264-2

Keywords

Navigation