Log in

The bimetric model with an informational metric tensor

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider a hybrid bimetric model where, in addition to the ordinary metric tensor that determines geometry, an informational metric is introduced to describe the reference frame of an observer. We note that the local information metric being Minkowskian explains one of the key aspects of the Einstein equivalence principle. Our approach has the potential to justify the three-dimensional nature of physical space and address the gravitational energy puzzle. Furthermore, it appears to be free of ghost instabilities in the matter sector, as the second metric tensor couples exclusively to the observer and is non-dynamical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

There are no data associated with this article.

References

  1. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). https://doi.org/10.12942/lrr-2014-4. [ar**v: 1403.7377 [gr-qc]]

    Article  MATH  Google Scholar 

  2. Hassan, S.F., Rosen, R.A.: Bimetric gravity from ghost-free massive gravity. JHEP 02, 126 (2012). https://doi.org/10.1007/JHEP02(2012)126. [ar**v: 1109.3515 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aoki, K., Maeda, K. i.: Dark matter in ghost-free bigravity theory: From a galaxy scale to the universe. Phys. Rev. D 90 (2014) 124089, https://doi.org/10.1103/PhysRevD.90.124089[ar**v: 1409.0202 [gr-qc]]

  4. Babichev, E., et al.: Bigravitational origin of dark matter. Phys. Rev. D 94, 084055 (2016). https://doi.org/10.1103/PhysRevD.94.084055. [ar**v: 1604.08564 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  5. Kolb, E.W., Ling, S., Long, A.J., Rosen, R.A.: Cosmological gravitational particle production of massive spin-2 particles. JHEP 05, 181 (2023). https://doi.org/10.1007/JHEP05(2023)181. [ar**v: 2302.04390 [astro-ph.CO]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Gialamas, I.D., Tamvakis, K.: Bimetric-affine quadratic gravity. Phys. Rev. D 107, 104012 (2023). https://doi.org/10.1103/PhysRevD.107.104012. [ar**v: 2303.11353 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Volkov, M.S.: Hairy black holes in the ghost-free bigravity theory. Phys. Rev. D 85, 124043 (2012). https://doi.org/10.1103/PhysRevD.85.124043. [ar**v: 1202.6682 [hep-th]]

    Article  ADS  Google Scholar 

  8. Gialamas, I. D., Tamvakis, K.: On the bimetric Starobinsky model. [ar**v: 2307.05673 [gr-qc]]

  9. Schmidt-May, A., von Strauss, M.: Recent developments in bimetric theory. J. Phys. A 49, 183001 (2016). https://doi.org/10.1088/1751-8113/49/18/183001. [ar**v: 1512.00021 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rept. 513, 1 (2012). https://doi.org/10.1016/j.physrep.2012.01.001. [ar**v: 1106.2476 [astro-ph.CO]]

    Article  ADS  MathSciNet  Google Scholar 

  11. Koyama, K.: Cosmological tests of modified gravity. Rept. Prog. Phys. 79, 046902 (2016). https://doi.org/10.1088/0034-4885/79/4/046902. [ar**v: 1504.04623 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  12. K. Sundermeyer, Symmetries in Fundamental Physics. In: Fundamental Theories of Physics, Vol. 176, Springer, NY (2014) https://doi.org/10.1007/978-94-007-7642-5.

  13. C. Rovelli, Quantum Gravity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, NY 2004) https://doi.org/10.1017/CBO9780511755804.

  14. Frewer, M.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213 (2009). https://doi.org/10.1007/s00707-008-0028-4

    Article  MATH  Google Scholar 

  15. Torretti, R.: Relativity and Geometry. Dover, NY (1996)

    MATH  Google Scholar 

  16. Macdonald, A.: Einstein’s hole argument. Am. J. Phys. 69, 223 (2001). https://doi.org/10.1119/1.1308265

    Article  ADS  Google Scholar 

  17. Gogberashvili, M.: Algebraical entropy and arrow of time. Entropy 24, 1522 (2022). https://doi.org/10.3390/e24111522. [ar**v: 2211.00501 [physics.gen-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  18. Susskind, L., Lindesay, J.: An Introduction to Black Holes, Information, and the String Theory Revolution: The Holographic Universe. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  19. Poincaré, H.: Dernières pensées. Flammarion, Paris (1913)

    Google Scholar 

  20. Herrera, L.: Landauer principle and general relativity. Entropy 22, 340 (2020). https://doi.org/10.3390/e22030340. [ar**v: 2003.07436 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  21. Ilgin, I., Yang, I.S.: Energy carries information. Int. J. Mod. Phys. A 29, 1450115 (2014). https://doi.org/10.1142/S0217751X14501152. [ar**v: 1402.0878 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  22. Gogberashvili, M., Modrekiladze, B.: Probing the information-probabilistic description. Int. J. Theor. Phys. 61, 149 (2022). https://doi.org/10.1007/s10773-022-05129-3. [ar**v: 2105.05034 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  23. Gogberashvili, M.: Fixing cosmological constant on the event horizon. Eur. Phys. J. C 82, 1049 (2022). https://doi.org/10.1140/epjc/s10052-022-11033-1. [ar**v: 2301.04334 [gr-qc]]

    Article  ADS  Google Scholar 

  24. Gogberashvili, M.: Information-probabilistic description of the universe. Int. J. Theor. Phys. 55, 4185 (2016). https://doi.org/10.1007/s10773-016-3045-4. [ar**v: 1504.06183 [physics.gen-ph]]

    Article  MathSciNet  MATH  Google Scholar 

  25. Gogberashvili, M.: Towards an information description of space-time. Found. Phys. 52, 74 (2022). https://doi.org/10.1007/s10701-022-00594-6. [ar**v: 2208.13738 [physics.gen-ph]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37 (1945) 81; In: Breakthroughs in Statistics: Foundations and basic theory, S. Kotz and N. L. Johnson (eds), Springer Series in Statistics, pp. 235–247 (Springer, NY 1992) https://doi.org/10.1007/978-1-4612-0919-5_16.

  27. Amari, Sh.-I.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer-Verlag, Berlin (1985)

  28. Amari, Sh.-I., Nagaoka, H.: Methods of Information Geometry, Translations of Mathematical Monographs, Vol. 191 (American Math. Soc., 2000)

  29. Caticha, A.: Lectures on probability, entropy and statistical physics. [ar**v: 0808.0012 [physics.data-an]]

  30. Gogberashvili, M.: Machian solution of hierarchy problem. Eur. Phys. J. C 54, 671 (2008). https://doi.org/10.1140/epjc/s10052-008-0559-9. [ar**v: 0707.4308 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gogberashvili, M., Kanatchikov, I.: Machian origin of the entropic gravity and cosmic acceleration. Int. J. Theor. Phys. 51, 985 (2012). https://doi.org/10.1007/s10773-011-0971-z. [ar**v: 1012.5914 [physics.gen-ph]]

    Article  MATH  Google Scholar 

  32. Gogberashvili, M.: On the dynamics of the ensemble of particles in the thermodynamic model of gravity. J. Mod. Phys. 5, 1945 (2014). https://doi.org/10.4236/jmp.2014.517189. [ar**v: 1309.0376 [gr-qc]]

    Article  Google Scholar 

  33. Gogberashvili, M., Kanatchikov, I.: Cosmological parameters from the thermodynamic model of gravity. Int. J. Theor. Phys. 53, 1779 (2014). https://doi.org/10.1007/s10773-013-1976-6. [ar**v: 1210.4618 [physics.gen-ph]]

    Article  MathSciNet  MATH  Google Scholar 

  34. Adams, C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  35. Berera, A., et al.: Knotty inflation and the dimensionality of spacetime. Eur. Phys. J. C 77, 682 (2017). https://doi.org/10.1140/epjc/s10052-017-5253-3. [ar**v: 1508.01458 [hep-ph]]

    Article  ADS  Google Scholar 

  36. Hartman, T., Maldacena, J.: Time evolution of entanglement entropy from black hole interiors. JHEP 05, 014 (2013). https://doi.org/10.1007/JHEP05(2013)014. [ar**v: 1303.1080 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Liu, H., Suh, S.J.: Entanglement tsunami: universal scaling in holographic thermalization. Phys. Rev. Lett. 112, 011601 (2014). https://doi.org/10.1103/PhysRevLett.112.011601. [ar**v: 1305.7244 [hep-th]]

    Article  ADS  Google Scholar 

  38. Liu, H., Suh, S.J.: Entanglement growth during thermalization in holographic systems. Phys. Rev. D 89, 066012 (2014). https://doi.org/10.1103/PhysRevD.89.066012. [ar**v: 1311.1200 [hep-th]]

    Article  ADS  Google Scholar 

  39. Aoki, S., Onogi, T., Yokoyama, S.: Conserved charges in general relativity. Int. J. Mod. Phys. A 36, 2150098 (2021). https://doi.org/10.1142/S0217751X21500986. [ar**v: 2005.13233 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  40. Eling, C., Jacobson, T., Mattingly, D.: Einstein-Aether theory. In Deserfest: A Celebration of the Life and Works of Stanley Deser, p. 163 (World Scientific, Singapore 2006) [ar**v: gr-qc/0410001 [gr-qc]]

Download references

Author information

Authors and Affiliations

Authors

Contributions

MG wrote the paper.

Corresponding author

Correspondence to Merab Gogberashvili.

Ethics declarations

Conflict of interest

M.G. declares no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogberashvili, M. The bimetric model with an informational metric tensor. Gen Relativ Gravit 55, 104 (2023). https://doi.org/10.1007/s10714-023-03153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03153-0

Keywords

Navigation