Log in

Weyl-Einstein structures on conformal solvmanifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A conformal Lie group is a conformal manifold (Mc) such that M has a Lie group structure and c is the conformal structure defined by a left-invariant metric g on M. We study Weyl-Einstein structures on conformal solvable Lie groups and on their compact quotients. In the compact case, we show that every conformal solvmanifold carrying a Weyl-Einstein structure is Einstein. We also show that there are no left-invariant Weyl-Einstein structures on non-abelian nilpotent conformal Lie groups, and classify them on conformal solvable Lie groups in the almost abelian case. Furthermore, we determine the precise list (up to automorphisms) of left-invariant metrics on simply connected solvable Lie groups of dimension 3 carrying left-invariant Weyl-Einstein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alekseevsky, D.V., Kimel’fel’d, B.N.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funkcional. Anal. i Priložen. 9(2), 5–11 (1975)

    MathSciNet  Google Scholar 

  2. Arroyo, R.M.: The Ricci flow in a class of solvmanifolds. Differ. Geom. Appl. 31(4), 472–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besse, A.L.: Einstein Manifolds. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Böhm, C., Lafuente, R. A.: Non-compact Einstein manifolds with symmetry. ar**v:2107.04210

  5. Bourguignon, J.-P., Hijazi, O., Milhorat, J.-L., Moroianu, A., Moroianu, S.: A Spinorial Approach to Riemannian and Conformal Geometry. European Mathematical Society (EMS), Zürich (2015)

    Book  MATH  Google Scholar 

  6. Dotti de Miatello, I.: Ricci curvature of left invariant metrics on solvable unimodular Lie groups. Math. Z. 180, 257–263 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freibert, M.: Cocalibrated structures on Lie algebras with a codimension one abelian ideal. Ann. Global Anal. Geom. 42, 537–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gauduchon, P.: Structures de Weyl-Einstein, espaces de twisteurs et variétés de type \(S^ 1 \times S^ 3\). J. Reine Angew. Math. 469, 1–50 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Ha, K., Lee, J.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282(6), 868–898 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lauret, J.: Einstein solvmanifolds are standard. Ann. Math. 172(3), 1859–1877 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mal’cev, A.I.: Über eine Klasse homogener Räume (On a class of homogeneous spaces). Izv. Akad. Nauk SSSR. Ser. Mat. 13, 9–32 (1949)

    Google Scholar 

  13. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moroianu, A.: Lectures on Kähler Geometry, vol. 69. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  15. Petersen, P.: Riemannian Geometry, vol. 171. Springer, New York, NY (2006)

    MATH  Google Scholar 

  16. Trageser, W. (ed.): Das Relativitätsprinzip. Eine Sammlung von Abhandlungen. Heidelberg, Springer Spektrum (2016)

    MATH  Google Scholar 

  17. Weyl, H.: Raum, Zeit, Materie. Vorlesungen über Allgemeine Relativitätstheorie. (1923)

  18. Wolf, J.: Curvature in nilpotent Lie groups. Proc. Am. Math. Soc. 15, 271–274 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana del Barco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V. del Barco is partially supported by FAEPEX-UNICAMP grant 2566/21 and FAPESP grant 2021/09197-8; V. del Barco and A. Moroianu are supported by MATHAMSUD Regional Program 21-MATH-06.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Barco, V., Moroianu, A. & Schichl, A. Weyl-Einstein structures on conformal solvmanifolds. Geom Dedicata 217, 9 (2023). https://doi.org/10.1007/s10711-022-00743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-022-00743-1

Keywords

Mathematics Subject Classification

Navigation