Log in

Bacterial genetic methods to explore the biology of mariner transposons

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mariners are small DNA mediated transposons of eukaryotes that fortuitously function in bacteria. Using bacterial genetics, it is possible to study a variety of properties of mariners, including transpositional ability, dominant-negative regulation, overexpresson inhibition, and the function of cis-acting sequences like the inverted terminal repeats. In conjunction with biochemical techniques, the structure of the transposase can be elucidated and the activity of the elements can be improved for genetic tool use. Finally, it is possible to uncover functional transposase genes directly from genomes given a suitable bacterial genetic screen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auge-Gouillou C, Hamelin MH, Demattei MV et al (2001) The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol Genet Genomics 265(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Auge-Gouillou C, Brillet B, Germon S et al (2005a) Mariner Mos1 transposase dimerizes prior to ITR binding. J Mol Biol 351(1):117–130

    Article  CAS  PubMed  Google Scholar 

  • Auge-Gouillou C, Brillet B, Hamelin MH et al (2005b) Assembly of the mariner Mos1 synaptic complex. Mol Cell Biol 25(7):2861–2870

    Article  CAS  PubMed  Google Scholar 

  • Bae T, Banger AK, Wallace A et al (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101(33):12312–12317

    Article  CAS  PubMed  Google Scholar 

  • Barry EG, Witherspoon DJ, Lampe DJ (2004) A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics 166(2):823–833

    Article  CAS  PubMed  Google Scholar 

  • Beare PA, Howe D, Cockrell DC et al (2008) Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191(5):1369–1381

    Article  PubMed  Google Scholar 

  • Bessereau JL (2006) Insertional mutagenesis in C. elegans using the Drosophila transposon Mos1: a method for the rapid identification of mutated genes. Methods Mol Biol 351:59–73

    CAS  PubMed  Google Scholar 

  • Bextine B, Lampe D, Lauzon C et al (2005) Establishment of a genetically marked insect-derived symbiont in multiple host plants. Curr Microbiol 50(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Boulin T, Bessereau JL (2007) Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protoc 2(5):1276–1287

    Article  CAS  PubMed  Google Scholar 

  • Bryan GJ, Jacobson JW, Hartl DL (1987) Heritable somatic excision of a Drosophila transposon. Science 235(4796):1636–1638

    Article  CAS  PubMed  Google Scholar 

  • Butler MG, Chakraborty SA, Lampe DJ (2006) The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition. Genetica 127(1–3):351–366

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Jasinskiene N, Morgan D et al (2000) Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 30(11):1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Cowan RK, Hoen DR, Schoen DJ et al (2005) MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol Biol Evol 22(10):2084–2089

    Article  CAS  PubMed  Google Scholar 

  • Crisostomo MI, Vollmer W, Kharat AS et al (2006) Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol Microbiol 61(6):1497–1509

    Article  CAS  PubMed  Google Scholar 

  • De Aguiar D, Hartl DL (1999) Regulatory potential of nonautonomous mariner elements and subfamily crosstalk. Genetica 107(1–3):79–85

    Article  PubMed  Google Scholar 

  • Fedoroff N (2002) Control of mobile DNA. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DC, pp 997–1007

    Google Scholar 

  • Felek S, Krukonis ES (2009) The Yersinia pestis Ail protein mediates binding and Yop-delivery to host cells required for plague virulence. Infect Immun 77(2):825–836

    Article  CAS  PubMed  Google Scholar 

  • Garza D, Medhora M, Koga A et al (1991) Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics 128(2):303–310

    CAS  PubMed  Google Scholar 

  • Guo BP, Mekalanos JJ (2001) Helicobacter pylori mutagenesis by mariner in vitro transposition. FEMS Immunol Med Microbiol 30(2):87–93

    Article  CAS  PubMed  Google Scholar 

  • Guzman LM, Belin D, Carson MJ et al (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130

    CAS  PubMed  Google Scholar 

  • Hammer SE, Strehl S, Hagemann S (2005) Homologs of Drosophila P transposons were mobile in zebrafish but have been domesticated in a common ancestor of chicken and human. Mol Biol Evol 22(4):833–844

    Article  CAS  PubMed  Google Scholar 

  • Hartl D (2001) Discovery of the transposable element mariner. Genetics 157(2):471–476

    CAS  PubMed  Google Scholar 

  • Hartl DL, Lohe AR, Lozovskaya ER (1997a) Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 31:337–358

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Lohe AR, Lozovskaya ER (1997b) Regulation of the transposable element mariner. Genetica 100(1–3):177–184

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Lozovskaya ER, Nurminsky DI et al (1997c) What restricts the activity of mariner-like transposable elements. Trends Genet 13(5):197–201

    Article  CAS  PubMed  Google Scholar 

  • Huisman O, Kleckner N (1987) A new generalizable test for detection of mutations affecting Tn10 transposition. Genetics 116(2):185–189

    CAS  PubMed  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of slee** beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83(22):8684–8688

    Article  CAS  PubMed  Google Scholar 

  • Krebs MP, Reznikoff WS (1988) Use of a Tn5 derivative that creates lacZ translational fusions to obtain a transposition mutant. Gene 63(2):277–285

    Article  CAS  PubMed  Google Scholar 

  • Kunze R, Behrens U, Courage-Franzkowiak U et al (1993) Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc Natl Acad Sci USA 90(15):7094–7098

    Article  CAS  PubMed  Google Scholar 

  • Lampe DJ, Churchill ME, Robertson HM (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15(19):5470–5479 published erratum appears in EMBO J 1997 Jul 1;16(13):4153

    CAS  PubMed  Google Scholar 

  • Lampe DJ, Grant TE, Robertson HM (1998) Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149(1):179–187

    CAS  PubMed  Google Scholar 

  • Lampe DJ, Akerley BJ, Rubin EJ et al (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci USA 96(20):11428–11433

    Article  CAS  PubMed  Google Scholar 

  • Lampe DJ, Witherspoon DJ, Soto-Adames FN et al (2003) Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 20(4):554–562

    Article  CAS  PubMed  Google Scholar 

  • Le Breton Y, Mohapatra NP, Haldenwang WG (2006) In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 72(1):327–333

    Article  CAS  PubMed  Google Scholar 

  • Lipkow K, Buisine N, Lampe DJ et al (2004) Early intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex. Mol Cell Biol 24(18):8301–8311

    Article  CAS  PubMed  Google Scholar 

  • Lohe AR, Hartl DL (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol 13(4):549–555

    CAS  PubMed  Google Scholar 

  • Lohe AR, Hartl DL (2002) Efficient mobilization of mariner in vivo requires multiple internal sequences. Genetics 160(2):519–526

    CAS  PubMed  Google Scholar 

  • Lohe AR, Sullivan DT, Hartl DL (1996) Subunit interactions in the mariner transposase. Genetics 144(3):1087–1095

    CAS  PubMed  Google Scholar 

  • Lohe AR, De Aguiar D, Hartl DL (1997) Mutations in the mariner transposase: the D, D(35)E consensus sequence is nonfunctional. Proc Natl Acad Sci USA 94(4):1293–1297

    Article  CAS  PubMed  Google Scholar 

  • Louvel H, Saint Girons I, Picardeau M (2005) Isolation and characterization of FecA- and FeoB-mediated iron acquisition systems of the spirochete Leptospira biflexa by random insertional mutagenesis. J Bacteriol 187(9):3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Schoor KD, Hartl DL (1991) Identification of nucleotide substitutions necessary for trans- activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics 128(4):777–784

    CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226(4676):792–801

    Article  CAS  PubMed  Google Scholar 

  • Medhora MM, MacPeek AH, Hartl DL (1988) Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J 7(7):2185–2189

    CAS  PubMed  Google Scholar 

  • Medhora M, Maruyama K, Hartl DL (1991) Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128(2):311–318

    CAS  PubMed  Google Scholar 

  • Medina AA, Shanks RM, Kadouri DE (2008) Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109 J. BMC Microbiol 8:33

    Article  PubMed  Google Scholar 

  • Munoz-Elias EJ, Marcano J, Camilli A (2008) Isolation of Streptococcus pneumoniae biofilm mutants and their characterization during nasopharyngeal colonization. Infect Immun 76(11):5049–5061

    Article  CAS  PubMed  Google Scholar 

  • Pledger DW, Coates CJ (2005) Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti. Insect Biochem Mol Biol 35(10):1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Pledger DW, Fu YQ, Coates CJ (2004) Analyses of cis -acting elements that affect the transposition of Mos1 mariner transposons in vivo. Mol Genet Genomics 272(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Richardson JM, Dawson A, O’Hagan N et al (2006) Mechanism of Mos1 transposition: insights from structural analysis. EMBO J 25(6):1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Robert V, Bessereau JL (2007) Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 26(1):170–183

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM (2002) Evolution of DNA transposons in eukaryotes. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, D.C, pp 1093–1110

    Google Scholar 

  • Robertson HM, Lampe DJ (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol 12(5):850–862

    CAS  PubMed  Google Scholar 

  • Robertson HM, Martos R (1997) Molecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage. Gene 205(1–2):219–228

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Zumpano KL (1997) Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205(1–2):203–217

    Article  CAS  PubMed  Google Scholar 

  • Rubin EJ, Akerley BJ, Novik VN et al (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96(4):1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Schweizer H (2008) Bacterial genetics: past achievements, present state of the field, and future challenges. Biotechniques 44(5):633–634 636-41

    Article  CAS  PubMed  Google Scholar 

  • Shanks RM, Caiazza NC, Hinsa SM et al (2006) Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72(7):5027–5036

    Article  CAS  PubMed  Google Scholar 

  • Stewart PE, Rosa PA (2008) Transposon mutagenesis of the lyme disease agent Borrelia burgdorferi. Methods Mol Biol 431:85–95

    Article  CAS  PubMed  Google Scholar 

  • Tosi LR, Beverley SM (2000) cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 28(3):784–790

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Swevers L, Iatrou K (2000) Mariner (Mos1) transposase and genomic integration of foreign gene sequences in Bombyx mori cells. Insect Mol Biol 9(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Williams DC, Boulin T, Ruaud AF et al (2005) Characterization of Mos1-mediated mutagenesis in Caenorhabditis elegans: a method for the rapid identification of mutated genes. Genetics 169(3):1779–1785

    Article  CAS  PubMed  Google Scholar 

  • Witherspoon DJ, Robertson HM (2003) Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and C. briggsae. J Mol Evol 56(6):751–769

    Article  CAS  PubMed  Google Scholar 

  • Wong SM, Akerley BJ (2008) Identification and analysis of essential genes in Haemophilus influenzae. Methods Mol Biol 416:27–44

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Meir YJ, Coates CJ et al (2006) piggyBac is a flexible and highly active transposon as compared to slee** beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103(41):15008–15013

    Article  CAS  PubMed  Google Scholar 

  • Yook K, Hodgkin J (2007) Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 175(2):681–697

    Article  CAS  PubMed  Google Scholar 

  • Zhang JK, Pritchett MA, Lampe DJ et al (2000) In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proc Natl Acad Sci USA 97(17):9665–9670

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Dawson A, Finnegan DJ (2001) DNA-binding activity and subunit interaction of the mariner transposase. Nucleic Acids Res 29(17):3566–3575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported grants from the National Science Foundation (0091044) and the United States Department of Agriculture-Animal and Plant Inspection Service to D. Lampe. I would like to acknowledge the technical support of Stacey Cehelsky, Austin Bowen, Molly Dando, and Amy Deschamps and many stimulating conversations over the years with Ian Boussy on transposon evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lampe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampe, D.J. Bacterial genetic methods to explore the biology of mariner transposons. Genetica 138, 499–508 (2010). https://doi.org/10.1007/s10709-009-9401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9401-z

Keywords

Navigation