Log in

A 2D discrete model with a bilinear softening constitutive law applied to dynamic crack propagation problems

  • Original Article
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In the present work, we propose the incorporation of a bilinear softening constitutive law in a purely linear elastic discrete model previously developed by the authors. The new model includes information of the fracture energy for the constitutive law. Three numerical examples of dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the modification proposed. The obtained results are presented in terms of the crack path, the crack speed ,and the dissipated energy. These results are compared with those obtained with a previous discrete model developed by the authors and other numerical results published by other researchers. Final comments on the performance of the new model are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J Fract 171(1):65–78

    Article  Google Scholar 

  • Allen M, Tildesley D (1987) Computer simulation of liquids, eigth edn. Clarendon Press, Oxford

    Google Scholar 

  • Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  Google Scholar 

  • Bathe K (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal re meshing. Int J Numer Meth Eng 45:601–620

    Article  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment. Int J Numer Method Eng 58(12):1873–1905

    Article  Google Scholar 

  • Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element free Galerkin method. Comput Struct 71:173–195

    Article  Google Scholar 

  • Belytschko T, Lu Y, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  Google Scholar 

  • Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39:923–938

    Article  Google Scholar 

  • Berton S, Bolander J (2006) Crack band model of fracture in irregular lattices. Comput Methods Appl Mech Eng 195:7172–7181

    Article  Google Scholar 

  • Bolander J, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71:94–106

    Article  Google Scholar 

  • Bordas S, Rabczuk T, Zi G (2008) Three dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Eng Fract Mech 75:943–960

    Article  Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217220:77–95

    Article  Google Scholar 

  • Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  Google Scholar 

  • Bourdin B, Larsen CJ, Richardson CL (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133–143

    Article  Google Scholar 

  • Braun M, Fernández-Sáez J (2014) A new 2D discrete model applied to dynamic crack propagation in brittle materials. Int J Solids Struct 51(21–22):3787–3797

    Article  Google Scholar 

  • Broberg KB (1999) Cracks and fracture. Academic Press, San Diego

    Google Scholar 

  • Camacho G, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  Google Scholar 

  • Cervera M, Hinton E, Hassan O (1987) Nonlinear analysis of reinforced concrete plate and shell structures using 20-noded isoparametric brick elements. Comput Struct 25(6):845–869

    Article  Google Scholar 

  • Decker RF (1979) Source book on maraging steels: a comprehensive collection of outstanding articles from the periodical and reference literature. Metals Park, Ohio, American Society for Metals

  • Elices M, Guinea G, Gómez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163

    Article  Google Scholar 

  • Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element free galerkin methods for crack tip fields. Int J Numer Meth Eng 40(8):1483–1504

    Article  Google Scholar 

  • Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  Google Scholar 

  • Ha Y, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244

    Article  Google Scholar 

  • Ha Y, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78:1156–1168

  • Heermann H, Kertesz J, De Arcangelis L (1989) Fractal shapes of deterministic cracks. Europhys Lett 10:147–152

    Article  Google Scholar 

  • Heino P, Kaski K (1997) Dynamic fracture of disordered viscoelastic solids. Phys Rev E 56(4):4364–4370

    Article  Google Scholar 

  • Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered fe implementation. Int J Fract 178(1–2):113–129

    Article  Google Scholar 

  • Kalthoff J, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1(1):185–195

    Google Scholar 

  • Kosteski L, Barrios D’ambra R, Iturrioz I (2012) Crack propagation in elastic solids using the truss-like discrete element method. Int J Fract 174:139–161

    Article  Google Scholar 

  • Kosteski L, D’ambra R, Iturrioz I (2008) Static and dynamic fractomechanics parameters determination applying the discrete element method composed by bars. Revista Internacional de Métodos Numéricos para Cálculo y Diseno en Ingeniería 24(4):323–343

    Google Scholar 

  • Landau L, Lifshitz E (1986) Theory of the elasticity, 2nd edn. Pergamon Press, New York

    Google Scholar 

  • Larsen CJ, Ortner C, Suli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20(07):1021–1048

    Article  Google Scholar 

  • Larson M, Needlemen A, Tvergaard V, Storakers B (1981) Instability and failure of internally pressurized ductile metal cylinders. Technical report, Division of Engineering, Brown University

  • Levy S, Molinari J, Radovitzky R (2012) Dynamic fragmentation of a brittle plate under biaxial loading: strength or toughness controlled? Int J Fract 174(2):203–215

    Article  Google Scholar 

  • Liu G (2010) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  • Martín T, Espanol P, Rubio M (2005) Mechanisms for dynamic crack branching in brittle elastic solids: strain field kinematics and reflected surface waves. Phys Rev E 71(3):03–6202

  • Martín T, Espanol P, Rubio M, Zúniga I (2000) Dynamica fracture in a discrete model of a brittle elastic solid. Phys Rev E 61(6):6120–6131

    Article  Google Scholar 

  • Mergheim J, Kuhl E, Steinmann P (2005) A finite element method for the computational modelling of cohesive cracks. Int J Numer Meth Eng 63(2):276–289

    Article  Google Scholar 

  • Miehe C, Gurses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment. Int J Numer Meth Eng 72(2):127–155

    Article  Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(4548):2765–2778

    Article  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int J Numer Meth Eng 83(10):1273–1311

    Article  Google Scholar 

  • Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without re-meshing. Int J Numer Meth Eng 46:131–150

    Article  Google Scholar 

  • Nayfeh A, Hefzy M (1978) Crack propagation in elastic solids using the truss-like discrete element method. AIAA J 16:779–787

    Article  Google Scholar 

  • Nguyen V, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  Google Scholar 

  • Noor A (1988) Continuum modeling for repetitive lattice structures. Appl Mech Rev 41:285–296

    Article  Google Scholar 

  • Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Meth Eng 28(2):461–474

    Article  Google Scholar 

  • Onate E, Oller S, Oliver J, Lubliner J (1988) A constitutive model for cracking of concrete based on the incremental theory of plasticity. Eng Comput 5(4):309–319

    Article  Google Scholar 

  • Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55:35–60

    Article  Google Scholar 

  • Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95:279–297

    Article  Google Scholar 

  • Rabczuk T, Belytschko T (2004) Cracking particles a simplified meshfree method for arbitrary evolving cracks. Int J Numer Method Eng 61(13):2316–2343

    Article  Google Scholar 

  • Rabczuk T, Bordas S, Zi G (2007) A three dimensional meshfree method for static and dynamic multiple crack nucleation propagation with crack path continuity. Comput Mech 40:473–495

    Article  Google Scholar 

  • Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39:743–760

    Article  Google Scholar 

  • Remmers J, Borst R, Needleman A (2008) The simulation of dynamic crack propagation using the cohesive segments method. J Mech Phys Solids 56(1):70–92

    Article  Google Scholar 

  • Rinaldi A, Krajcinovic D, Peralta P, Lai Y (2008) Lattice models of polycrystalline microstructures: a quantitative approach. Mech Mater 40:17–36

    Article  Google Scholar 

  • Rinaldi A, Lai Y (2007) Statistical damage theory of 2D lattices: energetics and physical foundations of damage parameter. Int J Plast 23:1769–1825

    Article  Google Scholar 

  • Ruiz G, Ortiz M, Pandolfi A (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Meth Eng 48:963–994

    Article  Google Scholar 

  • Sharon E, Gross P, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25):5096–5099

    Article  Google Scholar 

  • Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  Google Scholar 

  • Song JH, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67:868–893

    Article  Google Scholar 

  • Song JH, Belytschko T (2009) Cracking node method for dynamic fracture with finite elements. Int J Numer Method Eng 77(3):360–385

    Article  Google Scholar 

  • Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42(2):239–250

    Article  Google Scholar 

  • Sulsky D, Chen Z, Schreyer H (1994) A particle method for historydependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  Google Scholar 

  • Wang G, Al-Ostaz A, Cheng AD, Mantena P (2009) Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci 44:1126–1134

  • Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  • Zeng X, Li S (2010) A multiscale cohesive zone model and simulations of fractures. Comput Methods Appl Mech Eng 199(912):547–556

    Article  Google Scholar 

  • Zhai J, Tomar V, Zhou M (2004) Micromechanical simulation of dynamic fracture using the cohesive finite element method. J Eng Mater Technol 126:179–191

    Article  Google Scholar 

  • Zhao GF, Fang J, Zhao J (2010) A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Methods Geomech 76-APM-15

  • Zhou F, Molinari JF (2004) Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. Int J Numer Meth Eng 59(1):1–24

    Article  Google Scholar 

  • Zi G, Rabczuk T, Wall W (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40:367–382

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Ministerio de Economía y Competitividad de España (Projects DPI2011-24068 and DPI2011-23191) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández-Sáez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, M., Fernández-Sáez, J. A 2D discrete model with a bilinear softening constitutive law applied to dynamic crack propagation problems. Int J Fract 197, 81–97 (2016). https://doi.org/10.1007/s10704-015-0067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0067-5

Keywords

Navigation