Log in

Effects of Oxygen Concentration on the Reaction to Fire of Cross-Laminated Timber in a Controlled-Atmosphere Cone Calorimeter

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper deals with the fire reaction as well as the gas and aerosol production of Cross-Laminated Timber (CLT) submitted to fire in oxygen-depleted environments. A Controlled-Atmosphere Cone Calorimeter (CACC) coupled to a Fourier Transform Infrared (FTIR) spectroscopy and an Electrical Low Pressure Impactor (ELPI) was used for this purpose. This combination enabled simultaneous assessments of Mass Loss Rate (MLR), evolved gases (qualitatively and quantitatively) and aerosols (size distribution and concentration) in the smoke. Several oxygen levels (21, 18, 15 and 10% O2) were studied at an external heat flux of 50 and 20 kW/m2. The combination of these two parameters allowed the response of CLT to be classified according to different fire scenarios. Indeed, an oxygen decrease shifted the combustion towards incompleteness or even prevented combustion. The production of carbon monoxide and methane was significantly promoted as well as acetaldehyde and ethene in some cases. The aerosol size distribution was slightly affected by oxygen depletion. Furthermore, decreasing the heat flux greatly reduced the decomposition rate but also promoted the production of unburnt gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Hall JJ, Harwood B (1995) Smoke or burns - Which is deadlier ? NFPA J 89(1):38–43

    Google Scholar 

  2. Guillaume E, Effets du feu sur les personnes, p 163

  3. ISO 13571 (2012) Life-threatening components of fire—Guidelines for the estimation of time to compromised tenability in fires

  4. ISO 5660–1:2015 (2015) Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement)

  5. Werrel M, Deubel JH, Krüger S, Hofmann A, Krause U (2014) The calculation of the heat release rate by oxygen consumption in a controlled-atmosphere cone calorimeter: heat release rate in a controlled-atmosphere cone calorimeter. Fire Mater 385(2):204–226. https://doi.org/10.1002/fam.2175

    Article  Google Scholar 

  6. Marquis D, Guillaume E, Lesenechal D (2013) Accuracy (Trueness and Precision) of cone calorimeter tests with and without a vitiated air enclosure. Procedia Eng 62:103–119. https://doi.org/10.1016/j.proeng.2013.08.048

    Article  Google Scholar 

  7. Mulholland G, Janssens M, Yusa S, Twilley W, Babrauskas V (1991) The effect of oxygen concentration on Co and smoke produced by flames. Fire Saf Sci 3:585–594. https://doi.org/10.3801/IAFSS.FSS.3-585

    Article  Google Scholar 

  8. Nelson GL (1995) Fire and Polymers II: Materials and Tests for Hazard Prevention, in ACS Symposium Series. American Chemical Society, Washington, DC

    Book  Google Scholar 

  9. Marquis D, Guillaume E, Camillo A (2014) Effects of oxygen availability on the combustion behaviour of materials in a controlled atmosphere cone calorimeter. Fire Saf Sci 11:138–151. https://doi.org/10.3801/IAFSS.FSS.11-138

    Article  Google Scholar 

  10. Sarah C (2019) An instrumented controlled-atmosphere cone calorimeter to characterize electrical cable behavior in depleted fires, p 249

  11. Etienne M, Evaluation du risque d’inflammation de gaz imbrûlés au cours d’un incendie en milieu sous-ventilé, p 283

  12. Marquis DM, Guillaume E, Effects of under-ventilated conditions on the reaction-to-fire of a polyisocyanurate foam, p 13

  13. Hermouet F, Développement d’une approche innovante de modélisation de la cinétique de décomposition thermique des matériaux solides en espaces confinés sous-ventilés. sApplication aux incendies en tunnel, p 265

  14. Swann JD, Ding Y, McKinnon MB, Stoliarov SI (2017) Controlled atmosphere pyrolysis apparatus II (CAPA II): a new tool for analysis of pyrolysis of charring and intumescent polymers. Fire Saf J 91:130–139. https://doi.org/10.1016/j.firesaf.2017.03.038

    Article  Google Scholar 

  15. Marquis DM, Guillaume E, Camillo A, Rogaume T, Usage of controlled-atmosphere cone calorimeter to provide input data for toxicity modelling, p 13

  16. Mustafa BG, Toxic species and particulate emissions from wood and pool fires, p 342

  17. ISO/TS 5660–5:2020 (2020) Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 5: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) under reduced oxygen atmospheres

  18. Tewarson A, Jiang F, Morikawa T (1993) Ventilation-controlled combustion of polymers. Combust Flame 95(1–2):151–169. https://doi.org/10.1016/0010-2180(93)90058-B

    Article  Google Scholar 

  19. Brohez S, Marlair G, Delvosalle C (2008) The effect of oxygen concentration on CO and soot yields in fires. Fire Mater 32(3):141–158. https://doi.org/10.1002/fam.960

    Article  Google Scholar 

  20. EN 13238:2010 (2010) Reaction to fire tests for building products - Conditioning procedures and general rules for selection of substrates

  21. Alarifi A, Andrews G, Witty L, Phylaktou H (2013) Ignition and toxicity of selected aircraft interior materials using the cone calorimeter and FTIR analysis, Proceedings of the InterFlam 2013. InterScience Communications: London, UK. 1: 37–48, ISBN: 978-0-9556548-9-3

  22. Irshad A, Andrews G, Phylaktou H, Gibbs B (2019) International seminar on fire and explosion hazards (9; 2019; Saint Petersburg, Russia). Develop Control Atmos Cone Calorim Simulate Compart Fires. https://doi.org/10.18720/SPBPU/2/K19-90

    Article  Google Scholar 

  23. Ngohang FE, Combination of mass loss cone, Fourier transform infrared spectroscopy and electrical low pressure impactor to extend fire behaviour characterization of materials, p 155

  24. ISO 19706:2011 (2011) Guidelines for assessing the fire threat to people

  25. Stec AA, Hull R (2010) Fire Toxicity. Woodhead Publishing, Sawston

    Book  Google Scholar 

  26. Friquin KL (2011) Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater 325(5):303–327. https://doi.org/10.1002/fam.1055

    Article  Google Scholar 

  27. Di Blasi C, Hernandez HG, Santoro A (2000) Radiative Pyrolysis of Single Moist Wood Particles. American Chemical Society, Washington, DC

    Book  Google Scholar 

  28. Quintiere JG, Rhodes B (1994) Fire growth models for materials, National Institute of Standards and Technology

  29. Sullivan AL, Ball R (2012) Thermal decomposition and combustion chemistry of cellulosic biomass. Atmos Environ 47:133–141. https://doi.org/10.1016/j.atmosenv.2011.11.022

    Article  Google Scholar 

  30. Cuevas J, Torero JL, Maluk C (2021) Flame extinction and burning behaviour of timber under varied oxygen concentrations. Fire Saf J 120:103087. https://doi.org/10.1016/j.firesaf.2020.103087

    Article  Google Scholar 

  31. Mikkola E (1991) Charring of wood based materials. Fire Saf Sci 3:547–556. https://doi.org/10.3801/IAFSS.FSS.3-547

    Article  Google Scholar 

  32. Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  Google Scholar 

  33. Laaongnaun S, Patumsawad S (2022) Particulate matter characterization of the combustion emissions from agricultural waste products. Heliyon 8(8):e10392. https://doi.org/10.1016/j.heliyon.2022.e10392

    Article  Google Scholar 

  34. Hosseini S et al (2010) Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos Chem Phys 10(16):8065–8076

    Article  Google Scholar 

  35. Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 50(9):1565–1618. https://doi.org/10.1080/10473289.2000.10464197

    Article  Google Scholar 

  36. Hertzberg T, Blomqvist P (2003) Particles from fires: a screening of common materials found in buildings. Fire Mater 27(6):295–314. https://doi.org/10.1002/fam.837

    Article  Google Scholar 

  37. Nussbaumer T, Czasch C, Klippel N, Johansson L, Tullin C 9, Particulate Emissions from Biomass Combustion in IEA Countries. p 40

  38. Hurley MJ et al (2016) SFPE Handbook of Fire Protection Engineering. Springer, New York. https://doi.org/10.1007/978-1-4939-2565-0

    Book  Google Scholar 

  39. Delichatsios MA (2005) Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Saf J 40(3):197–212. https://doi.org/10.1016/j.firesaf.2004.11.005

    Article  Google Scholar 

  40. Ohlemiller TJ, Kashiwagi T, Werner K (1987) Wood gasification at fire level heat fluxes. Combust Flame 69(2):155–170. https://doi.org/10.1016/0010-2180(87)90028-9

    Article  Google Scholar 

  41. Di Blasi C (2004) The burning of plastics. In: Troitzsch J (ed) Plastics Flammability Handbook, Principles Regulation Testing and Approval. Carl Hanser Verlag GmbH & Co KG, München, pp 47–132

    Chapter  Google Scholar 

  42. Kashiwagi T (1994) Polymer combustion and flammability—Role of the condensed phase. Symp (Int) Combust 25(1):1423–1437. https://doi.org/10.1016/S0082-0784(06)80786-1

    Article  Google Scholar 

  43. Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817. https://doi.org/10.1016/j.fuel.2009.05.001

    Article  Google Scholar 

Download references

Funding

Centre Scientifique et Technique du Bâtiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Véronique Marchetti or Gaëlle Fontaine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamandé, A., Marchetti, V., Bourbigot, S. et al. Effects of Oxygen Concentration on the Reaction to Fire of Cross-Laminated Timber in a Controlled-Atmosphere Cone Calorimeter. Fire Technol (2024). https://doi.org/10.1007/s10694-023-01518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10694-023-01518-0

Keywords

Navigation