Log in

Enceladus as a potential oasis for life: Science goals and investigations for future explorations

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Enceladus is the first planetary object for which direct sampling of a subsurface water reservoir, likely habitable, has been performed. Over a decade of flybys and seven flythroughs of its watery plume, the Cassini spacecraft determined that Enceladus possesses all the ingredients for life. The existence of active eruptions blasting fresh water into space, makes Enceladus the easiest target in the search for life elsewhere in the Solar System. Flying again through the plume with more advanced instruments, landing at the surface near active sources and collecting a sample for return to Earth are the natural next steps for assessing whether life emerges in this active world. Characterizing this habitable world also requires detailed map** and monitoring of its tidally-induced activity, from the orbit as well as from the surface using complementary platforms. Such ambitious goals may be achieved in the future in the framework of ESA large or medium-class missions in partnership with other international agencies, in the same spirit of the successful Cassini-Huygens mission. For all these reasons, exploring habitable ocean worlds, with Enceladus as a primary target, should be a priority topic of the ESA Voyage 2050 programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allen, M., et al.: Is Mars alive? EOS Trans. Am. Geophys. Union 87(41), 433–439 (2006)

    ADS  Google Scholar 

  2. Arridge, C.S., et al.: Map** magnetospheric equatorial regions at Saturn from Cassini prime mission observations. Space Sci. Rev. 164(1–4), 1–83 (2011)

    ADS  MathSciNet  Google Scholar 

  3. Barge, L.M., White, L.M.: Experimentally testing hydrothermal vent origin of life on Enceladus and other icy/ocean worlds. Astrobiology 17, 820–833 (2017)

    ADS  Google Scholar 

  4. Bedrossian, M., Lindensmith, C., Nadeau, J.L.: Digital holographic microscopy, a method for detection of microorganisms in plume samples from Enceladus and other icy worlds. Astrobiology 17(9), 913–925 (2017)

    ADS  Google Scholar 

  5. Bēhounková, M., et al.: Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat. Geo. 8, 601 (2015)

    ADS  Google Scholar 

  6. Běhounková, M., et al.: Plume activity and tidal deformation on Enceladus influenced by faults and variable ice shell thickness. Astrobiology 17(9), 941–954 (2017)

    ADS  Google Scholar 

  7. Bentley, M.S., et al.: MIDAS: Lessons Learned from the First Spaceborne Atomic Force Microscope. Acta Astronaut. 125, 11–21 (2016)

    ADS  Google Scholar 

  8. Beuthe, M., Rivoldini, A., Trinh, A.: Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 43(19), 10–088 (2016)

    Google Scholar 

  9. Beuthe, M.: Enceladus’s crust as a non-uniform thin shell: I tidal deformations. Icarus 302, 145–174 (2018)

    ADS  Google Scholar 

  10. Bland, M.T., et al.: Enceladus' extreme heat flux as revealed by its relaxed craters. Geophys. Res. Lett. 39(17) (2012)

  11. Bland, P.A., Travis, B.J.: Giant convecting mud balls of the early Solar System. Sci Adv. 3(7), e1602514 (2017)

  12. Bonaccorsi, R.B., et al.: Small, Fast, and Cold!: Enceladus Plume Analog Simulation Experiments. In 2019 Astrobiol. Sci. Conf. AGU. (2019)

  13. Bradley, A.S., et al.: Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem. Geochim. Cosmochim. Acta 73(1), 102–118 (2009)

    ADS  Google Scholar 

  14. Briois, C., et al.: Orbitrap mass analyser for in situ characterisation of planetary environments : Performance evaluation of a laboratory prototype. Planet. Space Sci. 131, 33–45 (2016)

    ADS  Google Scholar 

  15. Brown, R.H., et al.: Composition and Physical Properties of Enceladus’ Surface. Science 311, 1425 (2006)

    ADS  Google Scholar 

  16. Buratti, B.J., et al.: Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus. Science 364(6445)  (2019)

  17. Choblet, G., et al.: Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy 1(12), 841 (2017)

    ADS  Google Scholar 

  18. Čadek, O., et al.: Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43(11), 5653–5660 (2016)

    ADS  Google Scholar 

  19. Čadek, O., et al.: Viscoelastic relaxation of Enceladus’s ice shell. Icarus 291, 31–35 (2017)

    ADS  Google Scholar 

  20. Čadek, O., et al.: Long-term stability of Enceladus’ uneven ice shell. Icarus 319, 476–484 (2019)

    ADS  Google Scholar 

  21. Canup, R.M., Ward, W.R.: A common mass scaling for satellite systems of gaseous planets. Nature 441(7095), 834 (2006)

    ADS  Google Scholar 

  22. Carr, C.E., Bryan, N.C., Saboda, K.N., Bhattaru, S.A., Ruvkun, G., Zuber, M.T.: Nanopore sequencing at Mars, Europa, and microgravity conditions. NPJ Microgravity 6(1), 1–6  (2020)

  23. Charnoz, S. et al.: Origin and evolution of Saturn's ring system. In Saturn from Cassini-Huygens. Springer, Dordrecht.  (537–575) (2009)

  24. Clark, R.N., et al.: Isotopic ratios of Saturn’s rings and satellites: Implications for the origin of water and Phoebe. Icarus 321, 791–802 (2019)

    ADS  Google Scholar 

  25. Coustenis, A., Atreya, S.K., Balint, T., Brown, R.H., Dougherty, M.K., Ferri, F., ... & Toublanc, D.: TandEM: Titan and Enceladus mission. Experimental Astronomy 23(3), 893–946 (2009)

  26. Crida, A., Charnoz, S.: Formation of regular satellites from ancient massive rings in the Solar System. Science 338(6111), 1196–1199 (2012)

    ADS  Google Scholar 

  27. Crida, A., Charnoz, S., Hsu, H.W., & Dones, L.: Are Saturn’s rings actually young? Nature Astronomy 3(11), 967–970 (2019)

  28. Crow-Willard, E.N., Pappalardo, R.T.: Structural map** of Enceladus and implications for formation of tectonized regions. J. Geophys. Res. Planets 120, 928–950 (2015)

    ADS  Google Scholar 

  29. Ćuk, M., Dones, L., Nesvorný, D.: Dynamical evidence for a late formation of Saturn’s moons. Astrophys J 820(2), 97 (2016)

    ADS  Google Scholar 

  30. Deamer, D.W., Georgiou, C.D.: Hydrothermal conditions and the origin of cellular life. Astrobiology 15, 1091–1095 (2015)

    ADS  Google Scholar 

  31. Dhingra, D., Hedman, M.M., Clark, R.N., Nicholson, P.D.: Spatially resolved near infrared observations of Enceladus’ tiger stripe eruptions from Cassini VIMS. Icarus 292, 1 (2017)

    ADS  Google Scholar 

  32. Dorn, E.D., Nealson, K.H., Adami, C.: Monomer abundance distribution patterns as a universal biosignature : examples from terrestrial and digital life. J. Mol. Evol. 72(3), 283–295 (2011)

    ADS  Google Scholar 

  33. Dougherty, M.K., et al.: Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311(5766), 1406–1409 (2006)

    ADS  Google Scholar 

  34. Dougherty, M. et al.: Enceladus as an active world: History and discovery. In Enceladus and the Icy, Enceladus and the Icy Moons of Saturn, Editors: Schenk et al. Publisher: University of Arizona Press, Pages: 3–16, ISBN: 9780816537075  (2018)

  35. Dubinski, J.: A recent origin for Saturn’s rings from the collisional disruption of an icy moon. Icarus 321, 291–306 (2019)

    ADS  Google Scholar 

  36. Engelhardt, I.A.D., et al.: Plasma re- gions, charged dust and field-aligned currents near Enceladus. Planet. Space Sci. 117, 453–469 (2015)

    ADS  Google Scholar 

  37. Farrell, W.M., et al.: Modification of the plasma in the near-vicinity of Enceladus by the envelo** dust. Geophys. Res. Lett. 37, L20202 (2010)

    ADS  Google Scholar 

  38. Fuller, J., Luan, J., Quataert, E.: Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. MNRAS. 458, 3867–3879 (2016)

    ADS  Google Scholar 

  39. Füri, E., Marty, B.: Nitrogen isotope variations in the Solar System. Nat. Geosci. 8(7), 515 (2015)

    ADS  Google Scholar 

  40. Gautier, T., et al.: Development of HPLC-Orbitrap method for identification of N-bearing molecules in complex organic material relevant to planetary environments. Icarus 275, 259–266 (2016)

    ADS  Google Scholar 

  41. Glein, C.R., et al.: The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015)

    ADS  Google Scholar 

  42. Glein, C.R., et al.: The Geochemistry of Enceladus. In Enceladus and the Icy, Enceladus and the Icy Moons of Saturn, Editors: Schenk et al. Publisher: University of Arizona Press. (2018)

  43. Goguen, J.D., et al.: The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus 226(1), 1128–1137 (2013)

    ADS  Google Scholar 

  44. Goldstein, D.B., et al.: Enceladus Plume Dynamics: From Surface to Space. In Enceladus and the icy moons of Saturn (P.M. Schenk et., eds.), 175. Univ. of Arizona, Tucson.  (2018)

  45. Gurnett, D.A., et al.: The variable rotation period of the inner region of Saturn's plasma disk. Science 316(5823), 442–445  (2007)

  46. Gurnett, D.A., et al.: Auroral hiss, electron beams and standing Alfvén wave currents near Saturn's moon Enceladus. Geophys. Res. Lett. 38 (2011) 

  47. Hand, K.P., et al.: Report of the Europa Lander Science Definition Team. Technical report, Jet Propulsion Laboratory, California Institute of Technology. JPL D-97667.  (2017)

  48. Hansen, C.J., et al.: The composition and structure of the Enceladus plume. Geophys. Res. Lett. 38(11), (2011)

  49. Hansen, C.J., et al.: Investigation of diurnal variability of water vapor in Enceladus’ plume by the Cassini ultraviolet imaging spectrograph. Geophys. Res. Lett. 44, 672 (2017)

    ADS  Google Scholar 

  50. Hedman, M., et al.: An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500(7461), 182 (2013)

    ADS  Google Scholar 

  51. Hedman, M.M., et al.: Spatial variations in the dust-to-gas ratio of Enceladus’ plume. Icarus 305, 123 (2018)

    ADS  Google Scholar 

  52. Helfenstein, P., Porco, C.C.: Enceladus’ geysers : relation to geological features. Astron. J. 150(3), 96 (2015)

    ADS  Google Scholar 

  53. Hemingway, D., et al.: The interior of Enceladus. In: P.M. Schenk et., (ed.) Enceladus and the icy moons of Saturn, pp. 57–77. Univ. of Arizona, Tucson (2018)

    Google Scholar 

  54. Howett, C.J.A., Spencer, J.R., Pearl, J.: Segura and M. High heat flow from Enceladus’ south polar region measured using 10–600 cm−1 Cassini/CIRS data. J. Geophys. Res. 116, E03003 (2011)

  55. Hurford, T.A., et al.: Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447, 292 (2007)

    ADS  Google Scholar 

  56. Hurford, T.A., et al.: Tidal Volcanism on Enceladus. Lunar Planet. Sci. Conf. 1912  (2015)

  57. Hussmann, H., Choblet, G., Lainey, V., Matson, D.L., Sotin, C., Tobie, G., & Van Hoolst, T.: Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Science Reviews 153(1), 317–348 (2010)

  58. Hsu, H.W., et al.: Stream particles as the probe of the dust‐plasma‐magnetosphere interaction at Saturn. Journal of Geophysical Research: Space Phys. 116(A9)  (2011)

  59. Hsu, H.-W., et al.: Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015)

    ADS  Google Scholar 

  60. Hyodo, R., et al.: (2017) Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus 282, 195–213 (2017)

    ADS  Google Scholar 

  61. Ida, S.: The origin of Saturn’s rings and moons. Science 364(6445), 1028–1030 (2019)

    ADS  Google Scholar 

  62. Iess, L., et al.: The Gravity Field and Interior Structure of Enceladus. Science 344, 78 (2014)

    ADS  Google Scholar 

  63. Iess, L., et al.: Measurement and implications of Saturn’s gravity field and ring mass. Science 364(6445), eaat2965  (2019)

  64. Ingersoll, A.P., Ewald, S.P.: Decadal timescale variability of the Enceladus plumes inferred from Cassini images. Icarus 282, 260 (2017)

    ADS  Google Scholar 

  65. Jaumann, R., et al.: Distribution of icy particles across Enceladus’ surface as derived from Cassini-VIMS measurements. Icarus 193, 407 (2008)

    ADS  Google Scholar 

  66. Jones, G.H., et al.: Fine jet structure of electrically charged grains in Enceladus' plume. Geophys. Res. Lett. 36(16),  (2009)

  67. Kamata, S., Nimmo, F.: Interior thermal state of Enceladus inferred from the viscoelastic state of the ice shell. Icarus 284, 387–393 (2017)

    ADS  Google Scholar 

  68. Kelley, D.S., et al.: An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 N. Nature 412(6843), 145 (2001)

    ADS  Google Scholar 

  69. Kempf, S., Srama, R., Horanyi, M.: Electro-static potential of E ring particles. In Bull. Am. Astron. Soc. 37, 771 (2005)

    ADS  Google Scholar 

  70. Kempf, S., Beckmann, U., Schmidt, J.: How the Enceladus dust plume feeds Saturn’s E ring. Icarus 206, 446 (2010)

    ADS  Google Scholar 

  71. Khawaja, N., et al.: Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 489(4), 5231–5243 (2019)

    ADS  Google Scholar 

  72. Kirchoff, M.R., Schenk, P.: Crater modification and geologic activity in Enceladus’ heavily cratered plains: Evidence from the impact crater distribution. Icarus 202(2), 656–668 (2009)

    ADS  Google Scholar 

  73. Kite, E.S., Rubin, A.M.: Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. PNAS 113, 3972 (2016)

    ADS  Google Scholar 

  74. Kivelson, M.G., et al.: Magnetospheric interactions with satellites. Jupiter: The planet, satellites and magnetosphere. 513–536  (2004)

  75. Klenner, F., et al.: Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Astrobiology 2019, accepted for publication.  (2019)

  76. Konstantinidis, K., et al.: A lander mission to probe subglacial water on Saturn׳ s moon Enceladus for life. Acta Astronaut. 106, 63–89 (2015)

    ADS  Google Scholar 

  77. Kriegel, H., et al.: Ion densities and magnetic signatures of dust pickup at Enceladus. J. Geophys. Res. 119, 2740–2774 (2014)

    Google Scholar 

  78. Kriegel, H., et al.: Influence of negatively charged plume grains on the structure of Enceladus’ Alfvén wings: hybrid simulations versus Cassini magnetometer data. J. Geophys. Res. 116(A15), 10223 (2011)

    Google Scholar 

  79. Krupp, N., et al.: Energetic electron measurements near Enceladus by Cassini during 2005–2015. Icarus 306, 256–274 (2018)

    ADS  Google Scholar 

  80. Lainey, V., et al.: Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752(1), 14 (2012)

    ADS  Google Scholar 

  81. Lainey, V., et al.: New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281, 286–296 (2017)

    ADS  Google Scholar 

  82. Lazcano, A., Hand, K.P.: Frontier or fiction. Nature 488(7410), 160–161 (2012)

    ADS  Google Scholar 

  83. Le Gall, A., et al.: Thermally anomalous features in the subsurface of Enceladus’s south polar terrain. Nature Astro. 1, 0063 (2017)

    Google Scholar 

  84. Lindensmith, C.A., et al.: A submersible, off-axis holographic microscope for detection of microbial motility and morphology in aqueous and icy environments. PloS One 11(1), e0147700  (2016)

  85. Lingam, M., Loeb, A.: Is extraterrestrial life suppressed on subsurface ocean worlds due to the paucity of bioessential elements? Astron. J. 156(4), 151 (2018)

    ADS  Google Scholar 

  86. Lunine, J., Waite, H., Postberg, F., Spilker, L., & Clark, K.:  Enceladus life finder: the search for life in a habitable moon. In EGU General Assembly Conference Abstracts 14923 (2015)

  87. Lunine, J.I., et al.: Future Exploration of Enceladus and Other Saturnian Moons. In: P.M. Schenk et., (ed.) Enceladus and the icy moons of Saturn, pp. 437–452. Univ. of Arizona, Tucson (2018)

    Google Scholar 

  88. MacKenzie, S.M., et al.: THEO concept mission: testing the habitability of Enceladus’s Ocean. Adv. Space Res. 58(6), 1117–1137 (2016)

    ADS  Google Scholar 

  89. Magee, B.A., Waite, J.H.: Neutral Gas Composition of Enceladus’ Plume - Model Parameter Insights from Cassini- INMS. Lunar Planet. Sci. Conf. 2974 (2017) 

  90. Martin, W., Russell, M.J.: On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 362(1486), 1887–1926 (2007)

    Google Scholar 

  91. Martin, E.S., et al.: Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains. Icarus 294, 209–217 (2017)

    ADS  Google Scholar 

  92. Mathies, R.A., et al.: Feasibility of detecting bioorganic compounds in Enceladus plumes with the Enceladus Organic Analyzer. Astrobiology 17(9), 902–912 (2017)

    ADS  Google Scholar 

  93. McKay, C.P.: What is life—and how do we search for it in other worlds?. PLoS Biol. 2(9), e302 (2004)

  94. McKay, C.P.: Requirements and limits for life in the context of exoplanets. PNAS 111(35), 12628–12633 (2014)

    ADS  Google Scholar 

  95. McKay, et al.: Enceladus astrobiology, habitability, and the origins of life.In Enceladus and the icy moons of Saturn (P.M. Schenk et., eds.), pp. 437–452. Univ. of Arizona, Tucson. (2018)

  96. McKinnon, W.B.: The shape of Enceladus as explained by an irregular core: Implications for gravity, libration, and survival of its subsurface ocean. Journal of Geophysical Research: Planets 118(9), 1775–1788 (2013)

    ADS  Google Scholar 

  97. McKinnon, W.B.: Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Lett. 42, 2137–2143 (2015)

    ADS  Google Scholar 

  98. McKinnon, W.B., et al.: The Mysterious Origin of Enceladus: A Compositional Perspective. In Enceladus and the icy moons of Saturn (P.M. Schenk et., eds.), 17. Univ. of Arizona, Tucson. (2018)

  99. Mitri, G., et al.: Explorer of Enceladus and Titan (E2T): Investigating ocean worlds’ evolution and habitability in the solar system. Planet. Space Sci. 155, 73–90 (2018)

    ADS  Google Scholar 

  100. Morooka, M.W., et al.: Dusty plasma in the vicinity of Enceladus. J. Geophys. Res. 116, 12221 (2011)

    Google Scholar 

  101. Mumma, M.J., Charnley, S.B.: The chemical composition of comets—Emerging taxonomies and natal heritage. Ann. Rev. Astron. Astrophys. 49, 471–524 (2011)

    ADS  Google Scholar 

  102. Nadeau, J., et al.: Microbial morphology and motility as biosignatures for outer planet missions. Astrobiology 16(10), 755–774 (2016)

    ADS  Google Scholar 

  103. Nadeau, J.L., Bedrossian, M., Lindensmith, C.A.: Imaging technologies and strategies for detection of extant extraterrestrial microorganisms. Advances in Physics: X 3(1), 1424032 (2018)

    ADS  Google Scholar 

  104. Nakajima, A., et al.: Orbital evolution of Saturn’s mid-sized moons and the tidal heating of Enceladus. Icarus 317, 570–582 (2019)

    ADS  Google Scholar 

  105. Neveu, M., Rhoden, A.R.: Evolution of Saturn’s mid-sized moons. Nat. Astro. 3(6), 543 (2019)

    ADS  Google Scholar 

  106. Nimmo, F., Pappalardo, R.T.: Diapir-induced reorientation of Saturn’s moon Enceladus. Nature 441(7093), 614 (2006)

    ADS  Google Scholar 

  107. Nimmo, F., et al.: Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289 (2007)

    ADS  Google Scholar 

  108. Nimmo, F., et al.: Geophysical implications of the long‐wavelength topography of the Saturnian satellites. J. Geophys. Re.: Planets 116(E11)  (2011)

  109. Nimmo, F., et al.: Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astro. J. 148(3), 46  (2014)

  110. Nimmo, F., et al.: The thermal and orbital evolution of Enceladus: observational constraints and models. In: P.M. Schenk et., (ed.) Enceladus and the icy moons of Saturn, pp. 79–94. Univ. of Arizona, Tucson (2018)

    Google Scholar 

  111. Noyelles, B., Baillié, K., Charnoz, S., Lainey, V., Tobie, G.: Formation of the Cassini Division–II. Possible histories of Mimas and Enceladus. MNRAS 486(2), 2947–2963  (2019)

  112. Panning, M.P., et al.: Expected seismicity and the seismic noise environment of Europa. J. Geophys. Res. Planets 123(1), 163–179 (2018)

    ADS  Google Scholar 

  113. Pappalardo, R.T., Crow-Willard, E., Golombek, M.: Thrust Faulting as the Origin of Dorsa in the Trailing Hemisphere of Enceladus. In Bull. Am. Astron. Soc. 42, 976 (2010)

    ADS  Google Scholar 

  114. Parro, V., et al.: SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11(1), 15–28 (2011)

    ADS  Google Scholar 

  115. Patterson, G.W., et al.: In Enceladus and the icy moons of Saturn (P.M. Schenk et., eds.), 95. Univ. of Arizona, Tucson.  (2018)

  116. Perry, M.E., 7 Colleagues.: Cassini INMS measurements of Enceladus plume density Icarus 257 139 (2015)

  117. Pontefract, A., et al.: Sequencing nothing: Exploring failure modes of nanopore sensing and implications for life detection. Life sciences in space research 18, 80–86 (2018)

    ADS  Google Scholar 

  118. Porco, C., et al.: Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006)

    ADS  Google Scholar 

  119. Porco, C., et al.: How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related. Astron. J. 148(3), 45 (2014)

    ADS  Google Scholar 

  120. Porco, C.C., Dones, L., Mitchell, C.: Could it be snowing microbes on Enceladus? Assessing conditions in its plume and implications for future missions. Astrobiology 17(9), 876–901 (2017)

    ADS  Google Scholar 

  121. Postberg, F., et al.: sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009)

    ADS  Google Scholar 

  122. Postberg, F., et al.: A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474(7353), 620 (2011)

    ADS  Google Scholar 

  123. Postberg, F., et al.: Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568 (2018)

    ADS  Google Scholar 

  124. Postberg, F., et al.: Plume and Surface Composition of Enceladus, in Enceladus and the Icy Moons of Saturn, University of Arizona Press (Eds.: Schenk, Clark, Howett, Verbicer, Waite), 129–162 (2018b)

  125. Powner, M.W., et al.: Synthesis of activated pyrimidine ribonucleotides in prebiotic plausible conditions. Nature 14(459) 239–42  (2009)

  126. Pryor, W.R., et al.: The auroral footprint of Enceladus on Saturn. Nature 472(7343), 331–333 (2011)

    ADS  Google Scholar 

  127. Reh, K., et al.: Enceladus Life Finder: The Search for Life in a Habitable Moon. IEEE Aerospace Conference (2016). https://doi.org/10.1109/AERO.2016.7500813

    Article  Google Scholar 

  128. Russell, M.J.: The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta. Biotheor. 55(2), 133–179 (2007)

    Google Scholar 

  129. Russell, M.J., et al.: The drive to life on wet and icy worlds. Astrobiology 14(4), 308–343 (2014)

    ADS  Google Scholar 

  130. Salmon, J., Canup, R.M.: Accretion of Saturn’s inner mid-sized moons from a massive primordial ice ring. Astrophys. J. 836, 109 (2017)

    ADS  Google Scholar 

  131. Saur, J., Neubauer, F.M., Schilling, N.: Hemisphere coupling in Enceladus’ asym- metric plasma interaction. J. Geophys. Res. 112(A11), 11209 (2007)

    Google Scholar 

  132. Saur, J., et al.: Evidence for temporal variability of Enceladus’ gas jets: Modeling of Cassini observations. Geophys. Res. Lett. 35, L20105 (2008)

    ADS  Google Scholar 

  133. Saur, J., Neubauer, F.M., Glassmeier, K.H.: Induced magnetic fields in Solar System bodies. Space Sci. Rev. 152(1–4), 391–421 (2010)

    ADS  Google Scholar 

  134. Schenk, P.M., et al.: Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus 211, 740–757 (2011)

    ADS  Google Scholar 

  135. Schenk, P., Schmidt, J., White, O.: The Snows of Enceladus. EPSC-DPS Joint Meeting 2011, 1358 (2011)

    ADS  Google Scholar 

  136. Schmidt, J., Brilliantov, N., Spahn, F., Kempf, S.: Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685 (2008)

    ADS  Google Scholar 

  137. Schubert, G., et al.: Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188, 345–355 (2007)

    ADS  Google Scholar 

  138. Scipioni, F., et al.: Deciphering sub-micron ice particles on Enceladus surface. Icarus 290, 183–200 (2017)

    ADS  Google Scholar 

  139. Seaton III, K.M., et al.: Examining Biomarker Survivability in Enceladus Plume Capture Conditions using Laser-Induced Projectile Impact Testing: Implications in Future Icy Moon Sampling Strategies. In 2019 Astrobiology Science Conference. AGU. (2019)

  140. Sekine, Y., Genda, H.: Giant impacts in the Saturnian system: a possible origin of diversity in the inner mid-sized satellites. Planet. Space Sci. 63, 133–138 (2012)

    ADS  Google Scholar 

  141. Sekine, Y., et al.: High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Comms 6(8604),  (2015)

  142. Shoji, D., et al.: Non-steady state tidal heating of Enceladus. Icarus 235, 75–85 (2014)

    ADS  Google Scholar 

  143. Simon, S., et al.: Influence of negatively charged plume grains and hemisphere coupling currents on the structure of Enceladus’ alfvén wings: analytical modeling of Cassini magnetometer observations. J. Geophys. Res. 116(A15), 4221 (2011)

    Google Scholar 

  144. Simon, S., Saur, J., van Treeck, S.C., Kriegel, H., Dougherty, M.K.: Discontinuities in the magnetic field near Enceladus. Geophys. Res. Lett. 41, 3359–3366 (2014). https://doi.org/10.1002/2014GL060081

    Article  ADS  Google Scholar 

  145. Skelley, A.M., et al.: Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proc. Natl. Acad. Sci. 102(4), 1041–1046 (2005)

    ADS  Google Scholar 

  146. Smith, H.T., et al.: Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res. (Space Physics) 115, A10252 (2010)

    ADS  Google Scholar 

  147. Smith-Konter, B., Pappalardo, R.T.: Tidally driven stress accumulation and shear failure of Enceladus’s tiger stripes. Icarus 198, 435 (2008)

    ADS  Google Scholar 

  148. Sojo, V., et al.: The origin of life in alkaline vents. Astrobiology 16(2), 181–197 (2016)

    ADS  Google Scholar 

  149. Sotin, C., Altwegg, K., Brown, R.H., Hand, K., Lunine, J.I., Soderblom, J., ... & JET Team.: JET: Journey to enceladus and Titan. In Lunar and Planetary Science Conference 1608, 1326 (2011)

  150. Southworth, B.S., et al.: Surface deposition of the Enceladus plume and the zenith angle of emissions. Icarus 319, 33–42 (2019)

    ADS  Google Scholar 

  151. Soucek, O., et al.: Tidal dissipation in Enceladus’ uneven, fractured ice shell. Icarus 328, 218–231 (2019)

    ADS  Google Scholar 

  152. Spencer, J.: Mission Concept Study: Planetary Science Decadal Survey. Enceladus, Orbiter.  (2010)

  153. Spencer, J.R., et al.: Enceladus: An active cryovolcanic satellite. In Saturn from Cassini-Huygens. Springer, Dordrecht. 683–724 (2009)

  154. Spencer, J.R., et al.: Enceladus heat flow from high spatial resolution thermal emission observations. Eur. Planet. Sci. Congr. Abstr. 8, 840–841 (2013)

    ADS  Google Scholar 

  155. Spencer, J.R., et al.: Plume origins and plumbing: from ocean to surface. In Enceladus and the icy moons of Saturn (P.M. Schenk et., eds.), 163. Univ. of Arizona, Tucson. (2018)

  156. Spitale, J.N., et al.: Curtain eruptions from Enceladus’ south-polar terrain. Nature 521, 57 (2015)

    ADS  Google Scholar 

  157. Stähler, S.C., et al.: Seismic wave propagation in icy ocean worlds. J. Geophys. Res.: Planets. (2018)

  158. Steel, E.L., et al.: Abiotic and biotic formation of amino acids in the Enceladus ocean. Astrobiology 17, 862–875 (2017)

    ADS  Google Scholar 

  159. Tajeddine, R., et al.: True polar wander of Enceladus from topographic data. Icarus 295, 46–60 (2017)

    ADS  Google Scholar 

  160. Takano, Y., et al.: Planetary protection on international waters: An onboard protocol for capsule retrieval and biosafety control in sample return mission. Adv. Space Res. 53(7), 1135–1142 (2014)

    ADS  Google Scholar 

  161. Thomas, P.C., et al.: Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37 (2016)

    ADS  Google Scholar 

  162. Tinsley, T., Sarsfield, M., Rice, T.: Alternative radioisotopes for heat and power sources. J. Br. Interplanet. Soc. 64, 49–53 (2011)

    ADS  Google Scholar 

  163. Tinsley, T., et al.: Progress and future roadmap on 241 Am production for use in Radioisotope Power Systems. In 2019 IEEE Aerospace Conference. IEEE. 1–8 (2019) 

  164. Tiscareno, M.S., et al.: Close-range remote sensing of Saturn’s rings during Cassini’s ring-grazing orbits and Grand Finale. Science 364(6445), eaau1017 (2019)

  165. Tobie, G.: Enceladus’ hot springs. Nature 519(7542), 162–163 (2015)

    ADS  Google Scholar 

  166. Tobie, G., Cadek, O., Sotin, C.: Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus 196, 642 (2008)

    ADS  Google Scholar 

  167. Tobie, G., Teanby, N.A., Coustenis, A., Jaumann, R., Raulin, F., Schmidt, J., ... Westlake, J.H.: Science goals and mission concept for the future exploration of Titan and Enceladus. Planetary and Space Science 104, 59–77 (2014)

  168. Tsou, P., et al.: LIFE: Life investigation for Enceladus a sample return mission concept in search for evidence of life. Astrobiology 12(8), 730–742 (2012)

    ADS  Google Scholar 

  169. Vance, S., Goodman, J.: Oceanography of an ice-covered moon. In Europa 459–484  (2009)

  170. Vance, S.D., et al.: Vital signs: Seismology of icy ocean worlds. Astrobiology 18(1), 37–53 (2018)

    ADS  Google Scholar 

  171. Vance, S.D., et al.: Geophysical investigations of habitability in ice-covered ocean worlds. J. Geophys. Res.: Planets. (2018b)

  172. Vance, S.D., et al.: Enceladus Distributed Geophysical Exploration. Lunar Planet. Sci. Conf. (50)  (2019)

  173. Van Hoolst, T., et al.: The diurnal libration and interior structure of Enceladus. Icarus 277, 311–318 (2016)

    ADS  Google Scholar 

  174. Waite, J.H., et al.: Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006)

    ADS  Google Scholar 

  175. Waite, J.H., et al.: Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009)

    ADS  Google Scholar 

  176. Waite, J.H., et al.: Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356(6334), 155–159 (2017)

    ADS  Google Scholar 

  177. Waller, S.E., et al.: Hypervelocity Sampling of the Enceladus Plume: Implications for Astrobiology Investigations. In AGU Fall Meeting Abstracts (Vol. 2020, pp. P001–05).  (2020)

  178. Westall, F., et al.: A hydrothermal -sedimentary context for the origin of life. Astrobiology 18, 259–293 (2018)

  179. Wilson, A., Kerswell, R.R.: Can libration maintain Enceladus’s ocean? Earth Plan. Sci. Lett. 500, 41–46 (2018)

    ADS  Google Scholar 

  180. Worth, R.J., Sigurdsson, S., House, C.H.: Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology 13(12), 1155–1165 (2013)

    ADS  Google Scholar 

  181. Yaroshenko, V., et al.: Physical Processes in the Dusty Plasma of the Enceladus Plume. In Magnetic Fields in the Solar System. Springer, Cham. 241–262 (2018)

  182. Yeoh, S.K., et al.: On understanding the physics of the Enceladus south polar plume via numerical simulation. Icarus 253, 205 (2015)

    ADS  Google Scholar 

  183. Yin, A., Pappalardo, R.T.: Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn’s moon Enceladus. Icarus 260, 409–439 (2015)

    ADS  Google Scholar 

  184. Zhang, F., Nimmo, F.: Recent orbital evolution and the internal structures of Enceladus and Dione K. Icarus 204, 597–609 (2009)

    ADS  Google Scholar 

  185. Zolotov, M.Y.: An oceanic composition on early and today's Enceladus. Geophys. Res. Lett. 34(23), (2007)

  186. Zolotov, M.Y.: Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems. Icarus 220(2), 713–729 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël Choblet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choblet, G., Tobie, G., Buch, A. et al. Enceladus as a potential oasis for life: Science goals and investigations for future explorations. Exp Astron 54, 809–847 (2022). https://doi.org/10.1007/s10686-021-09808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09808-7

Keywords

Navigation