Log in

QTL identification in backcross population for brace-root-related traits in maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The brace-root is a crucial part of the whole root system in maize and plays an important role in the maintenance of lodging resistance. In this study, a BC2F1 population with three replicates, derived from the cross between Yi17 (well-developed brace-root) and Yi16 (poorly developed brace-root) was used for quantitative trait locus (QTL) detection. The total lengths of the genetic linkage map for the three replicates were 659.6, 662.9 and 936.8 cM, respectively, and the average distances between adjacent markers were 3.43, 3.68 and 4.61 cM, respectively. In total, 21 QTLs were detected in the BC2F1 population. The detected QTLs were mainly located at bin 3.05 (four QTLs) and 8.04–8.05 (three QTLs). Bin 3.05 was first detected to be rich in QTLs for brace-root traits in all three replicates, and QTLs detected in bin 8.04–8.05 were consistent with our previous results in the F2:3 population. The QTLs qW3a and qVA3 were coincident QTLs; of these, qW3a was a major effect QTL. These results may provide important information for maize breeders to pyramid favorable chromosome fragments or QTL in breeding programmes targeted at well-developed brace-root materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Add:

Additive effect

BRAD:

Brace-root average diameter

BRDW:

Brace-root dry weight

BRSA:

Brace-root surface area

BRTL:

Brace-root total length

BRTN:

Brace-root tier number

BRV:

Brace-root volume

cM:

CentiMorgan

IF2 :

Immortalized F2

LOD:

Logarithm of odds

RIL:

Recombinant inbred line

QTL:

Quantitative trait locus

R 2 :

Phenotypic variance explained

SSR:

Simple sequence repeat

References

  • Aiken RM, Smucker AJM (1996) Root system regulation of whole plant growth. Annu Rev Phytopathol 34:325–346

    Article  CAS  Google Scholar 

  • Burton AL, Johnson JM, Foerster JM, Hirsch CN, Buell CR, Hanlon MT (2014) QTL map** and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 127:2293–2311

    Article  Google Scholar 

  • Cai HG, Chen FJ, Mi GH, Zhang FS, Maurer HP, Liu WX, Reif JC, Yuan LX (2012) Map** QTL for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theor Appl Genet 125:1313–1324

    Article  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  Google Scholar 

  • De Dorlodot S, Forster BP, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  Google Scholar 

  • Gu D, Mei X, Yu T, Sun NN, Xu D, Liu CX, Cai YL (2017) QTL identification for brace-root traits of maize in different generations and environments. Crop Sci 57:13–21

    Article  Google Scholar 

  • Guingo E, Hebert Y, Charcosset A (1998) Genetic analysis of root traits in maize. Agronomie 18:225–235

    Article  Google Scholar 

  • Hochholdinger F, Park W, Sauer M, Woll K (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    Article  CAS  Google Scholar 

  • Hund A, Reimer R, Messmer R (2011) A consensus map of QTL controlling the root length of maize. Plant Soil 344:143–158

    Article  CAS  Google Scholar 

  • Jiao FC, Li YX, Chen L, Liu ZZ, Shi YS (2014) Genetic dissection for kernel row number in the specific maize germplasm four-rowed waxy corn. Sci Agric Sin 47:1256–1264

    CAS  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  Google Scholar 

  • Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Tai GQ, Chen YH (2012) QTL map** and epistasis analysis of brace root traits in maize. Mol Breed 30:697–708

    Article  Google Scholar 

  • Kosambi DD (1943) Statistics in function space. J Ind Math Soc 7:76–88

  • Lebreton C, Lazicjancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  • Li PC, Chen FJ, Cai HG, Liu JC, Pan QC, Liu ZG, Gu RL (2015) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66:3175–3188

    Article  CAS  Google Scholar 

  • Liu JC, Cai HG, Chu Q, Chen XH, Chen FJ, Yuan LX, Mi GH, Zhang FS (2010) Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations. Mol Breed 28:463–474

    Article  Google Scholar 

  • Liu ZG, Gao K, Shan SC, Gu RL, Wang ZK, Craft EJ, Mi GH, Yuan LX, Chen FJ (2017) Comparative analysis of root traits and the associated QTL for maize seedlings grown in paper roll, hydroponics and vermiculite culture system. Plant Sci 8:436

    Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandlcr VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8(1):33

    Article  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2010) Shovelomics: high throughput phenoty** of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Article  Google Scholar 

  • Tuberosa R, Parentoni S, Kim TS, Sanguineti MC, Phillips RL (1998a) Map** QTL for ABA concentration in leaves of a maize cross segregating for anthesis date. Maize Genet Coop Newsl 72:72

    Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S (1998b) RFLP map** of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor Appl Genet 97:744–755

    Article  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTL for root characteristics in maize grown in hydroponics and analysis of their overlap with QTL for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the key Research Projects of Chongqing (cstc2016shms-ztzx80016, cstc2016shms-ztzx80017), Research Fund for the Doctoral Program of Southwest University (SWU114035), and Fundamental Research Funds for the Central Universities (XDJK2018C052) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 The schematic diagram for backcross population development (EMF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Liu, C., Mei, X. et al. QTL identification in backcross population for brace-root-related traits in maize. Euphytica 216, 32 (2020). https://doi.org/10.1007/s10681-020-2561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-2561-8

Keywords

Navigation