Log in

STMS (sequence tagged microsatellite site) molecular markers as a valuable tool to confirm controlled crosses in chickpea (Cicer arietinum L.) breeding programs

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chickpea (Cicer arietinum L.) is an annual, diploid and autogamous grain legume. Most breeding processes developed in this crop start with complementary crosses, but artificial hybridization is a tedious operation probably due to the injury of the pistil caused during emasculation due to the small size of the flowers. The success in pod formation after hybridization together with the possibility of testing the hybrid nature of F1 is a key point to optimize chickpea breeding. Morphological characters are not always adequate to distinguish between progeny, consequently molecular markers are needed to verify hybrid nature. In this study, we show our experience in crossing programs and the use of molecular markers to test hybridization rate in three different cases (A) obtaining advanced lines combining resistance to blight and fusarium wilt; (B) develo** segregating populations for Orobanche foetida and (C) providing suitable materials to do genetic studies involving double pod mutants. A total of 2041 pollinated flowers produced 21.7, 16.8 and 8.7% of pods in each one of the three cases analyzed. Hybridization nature in F1 seeds was tested with STMS (sequence tagged microsatellite site) markers and ranged from 86 to 91% for the three cases. STMS markers were a valuable tool to detect hybrids, being simple to visualize and having a low cost. The confirmation of hybrid nature at the initial development stages of F1 plants is critical for reducing time and costs in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adak A, Sari D, Sari H, Toker C (2018) Gene effects of Cicer reticulatum on qualitative and quantitative traits in the cultivated chickpea. Plant Breed 136:939–947. https://doi.org/10.1111/pbr.12547

    Article  CAS  Google Scholar 

  • Ali L, Deokar A, Caballo C, Taran B, Gil J, Chen W, Millan T, Rubio J (2016) Fine map** for double podding gene in chickpea. Theor Appl Genet 129:77–86

    Article  CAS  Google Scholar 

  • Alzate-Marin AL, Baía GS, Martins-Filho S, Paula-Júnior TJ, Sediyama CS, Barros EG, Moreira MA (1996) Use of RAPD-PCR to identify true hybrid plants from crosses between closely related progenitors. Braz J Genet 19:621–623

    Article  CAS  Google Scholar 

  • Anbessa Y, Warkentin T (2005) On improving crossing success in chickpea. Plant Breed 124:608–609

    Article  Google Scholar 

  • Arora PP, Jeena AS (2000) Hybridization method in chickpea. Agric Sci Dig 20:271–272

    Google Scholar 

  • Asif M, Rahman MU, Mirza JI, Yusuf Z (2009) Parentage confirmation of cotton hybrids using molecular markers. Pak J Bot 41:695–701

    CAS  Google Scholar 

  • Bejiga G, Tessema T (1981) Identification of the optimum time of emasculation and pollination to increase percentage of hybrid seed set in chickpea. Ethiop J Agric Sci 3:129–134

    Google Scholar 

  • Castro P, Rubio J, Madrid E, Fernández-Romero M, Millán T, Gil J (2013) Efficiency of marker-assisted selection for ascochyta blight in chickpea. J Agric Sci 153:56–67. https://doi.org/10.1017/S0021859613000865

    Article  CAS  Google Scholar 

  • Doddamani D, Katta MA, Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinform 15:212

    Article  Google Scholar 

  • Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221. https://doi.org/10.1023/A:1022820520673

    Article  Google Scholar 

  • Gowda CLL (1981) Natural outcrossing in chickpea. Int Chickpea Newsl 5:6

    Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    Article  Google Scholar 

  • Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. https://doi.org/10.1111/tpj.12173

    Article  CAS  PubMed  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kalve S, Tadege M (2017) A comprehensive technique for artificial hybridization in chickpea (Cicer arietinum). Plant Methods 13:52–61. https://doi.org/10.1186/s13007-017-0202-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Korzun V (2002) Use of molecular markers in cereal breeding. Cell Mol Biol Lett 7:811–820

    CAS  PubMed  Google Scholar 

  • Koseoglu K, Adak A, Sari D, Sari H, Ceylan FO, Toker C (2017) Transgressive segregations for yield criteria in reciprocal interspecific crosses between Cicer arietinum L. and C. reticulatum Ladiz. Euphytica 213(6):116. https://doi.org/10.1007/s10681-017-1903-7

    Article  Google Scholar 

  • Kumar J, Vijayalakshmi NVS, Rao TN (2000) Inheritance of flower color in chickpea. J Hered 91:416–417

    Article  CAS  Google Scholar 

  • Landjeva SP, Korzun V, Börner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156:271–296. https://doi.org/10.1007/s10681-007-9371-0

    Article  CAS  Google Scholar 

  • Lichtenzveig J, Schiuring C, Dodoge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510

    Article  CAS  Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KhN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14:22499–22528. https://doi.org/10.3390/ijms141122499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muehlbauer F, Singh K (1987) Genetics of chickpea. In: Saxena MC, Singh KB (eds) The chickpea. CABI Publ, Wallingford, pp 99–125

    Google Scholar 

  • Nefzi F, Trabelsi I, Amri M, Triki E, Kharrat M, Abbes Z (2016) Response of some chickpea (Cicer arietinum L.) genotypes to Orobanche foetida Poir parasitism. Chil J Agric Res 76:170–178

    Article  Google Scholar 

  • Pereira RY, Faria A, da Siva LC, Alves L, Guimaraes P, de Faria LC, Cunha L, Santos H, Pessoa TL (2016) Application of microsatellite markers to confirm controlled crosses and asses genetic identity in common bean. Crop Breed Appl Biotechnol 16:234–239

    Article  Google Scholar 

  • Rajesh P, Tullu A, Gil J, Gupta V, Ranjekar P, Muehlbauer F (2002) Identification of an STMS marker for the double-podding gene in chickpea. Theor Appl Genet 105:604–607. https://doi.org/10.1007/s00122-002-0930-4

    Article  CAS  PubMed  Google Scholar 

  • Rubio J, Moreno MT, Cubero JI, Gil J (1998) Effect of the gene for double pod in chickpea on yield, yield components and stability of yield. Plant Breed 117:585–587. https://doi.org/10.1111/j.1439-0523.1998.tb02214.x

    Article  Google Scholar 

  • Rubio J, Flores F, Moreno MT, Cubero JI, Gil J (2004) Effects of the erect/bushy habit, single/double pod and late/early flowering genes on yield and seed size and their stability in chickpea. Field Crops Res 90:255–256. https://doi.org/10.1016/j.fcr.2004.03.005

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:173–233. https://doi.org/10.1038/72708

    Article  CAS  Google Scholar 

  • Sethy NK, Shokeen B, Bathia S (2003) Isolation and characterization of sequence tagged microsatellite sites markers in chickpea (Cicer arietinum L.). Mol Ecol Notes 3:428–430

    Article  CAS  Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ, Bathia S (2006) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428

    Article  CAS  Google Scholar 

  • Singh O, Van Rheenen H (1989) A possible role for the double-podded character in stabilizing the grain yield of chickpea. Indian J Pulses Res 2:97–101

    CAS  Google Scholar 

  • Singh O, Van Rheenen H (1994) Genetics and contributions of the multiseeded and double-podded characters to grain yield of chickpea. Indian J Pulses Res 7:97–102

    Google Scholar 

  • Solanki RK, Singh S, Kumar J (2010) Molecular marker assisted testing of hybridity of F1 plants in lentil. J Food Legumes 23:21–24

    Google Scholar 

  • Stefaniak T, McPhee K (2017) Comparison of hybridization techniques in chickpea. Crop Sci 57:843–846. https://doi.org/10.2135/cropsci2016.04.0253

    Article  CAS  Google Scholar 

  • Tarikul HM, Chandra DA (2013) Inheritance study of flower color in chickpea (Cicer arietinum L.). Indian J Agric Res 47:445–448

    Google Scholar 

  • Thudi M, Bodra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, KaviKishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6:e27275

    Article  CAS  Google Scholar 

  • Toker C, Canci H, Ceylan FO (2006) Estimation of outcrossing rate in chickpea (Cicer arietinum L.) sown in autumn. Euphytica 151:201–205

    Article  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  Google Scholar 

  • Vieira L de J, Tavares Filho LF De Q, Souza FVD, Alves AAC, De Oliveira EJ (2013) Development of interspecific hybrids of cassava and paternity analysis with molecular markers. J Agric Sci 151:849–861. https://doi.org/10.1017/S0021859612000871

    Article  Google Scholar 

  • Vieira ML, Santini L, Diniz AL, Munhoz C (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39:312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and map** of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    Article  CAS  Google Scholar 

  • Yasar Y, Ceylan FO, Ikten C, Toker C (2014) Comparison of expressivity and penetrance of the double podding trait and yield components based on reciprocal crosses of kabuli and desi chickpeas (Cicer arietinum L.). Euphytica 196(3):331–339

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by INIA Project RTA2017-00041-00-00 (co-financed by the European Union through the ERDF2014–2020 “Programa Operativo de Crecimiento Inteligente”), CEM14-17 and PP.AVA.AVA201601.17. Caballo C. acknowledges her Ph.D. fellowship INIA-CCAA. Castro P was funded by the University of Córdoba “Plan Propio de Investigación” and EU “Programa Operativo de fondos FEDER Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Caballo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballo, C., Castro, P., Gil, J. et al. STMS (sequence tagged microsatellite site) molecular markers as a valuable tool to confirm controlled crosses in chickpea (Cicer arietinum L.) breeding programs. Euphytica 214, 231 (2018). https://doi.org/10.1007/s10681-018-2314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2314-0

Keywords

Navigation