Log in

Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In the face of decades of unsustainable development that has led to significant depletion of resources and environmental imbalances, the need for advanced methods to understand and mitigate adverse environmental effects has never been more critical. This study introduces an innovative approach using Artificial Neural Networks (ANN) to predict the biocapacity and ecological footprint, focusing on the forest land indicator in Latin America and the Caribbean up to 2030, aligning with the Sustainable Development Goals (SDGs). Utilizing the Python programming language and leveraging the TensorFlow library for its robustness in handling complex datasets, we designed a neural network model that underwent thirty thousand iterations to identify the optimal processing time, approximately five minutes per dataset. Our analysis includes 57 annual records across 128 countries, highlighting the region’s rich natural resources. The findings underscore the critical importance of develo** sustainable business models that responsibly harness these resources, offering stakeholders fresh opportunities to engage in sustainable development practices actively. Moreover, the study serves as a vital roadmap for other develo** regions aspiring to enhance their environmental sustainability strategies and climate change mitigation efforts. By accurately predicting biocapacity and ecological footprints, this research not only aids in the strategic planning of sustainable development but also sets a precedent for applying artificial intelligence in environmental science, offering a novel approach for policymakers and business practitioners alike in Latin America and the Caribbean. These findings provide a practical guide for policymakers and business practitioners to develop sustainable business models and enhance environmental sustainability strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems

  • Acevedo-Duque, Á., Gonzalez-Diaz, R., Vega-Muñoz, A., Fernández Mantilla, M. M., Ovalles-Toledo, L. V., & Cachicatari-Vargas, E. (2021). The role of b companies in tourism towards recovery from the crisis covid-19 inculcating social values and responsible entrepreneurship in Latin America. Sustainability, 13(14), 7763. https://doi.org/10.3390/su13147763.

    Article  CAS  Google Scholar 

  • AdebayoT. S., AwosusiA. A., OdugbesanJ. A., AkinsolaG. D., Wong, W. K., & Rjoub, H. (2021). Sustainability of energy-induced growth nexus in Brazil: Do carbon emissions and urbanization matter? Sustainability, 13(8). https://doi.org/10.3390/su13084371.

  • Ahmad, M., Jiang, P., Majeed, A., Umar, M., Khan, Z., & Muhammad, S. (2020). The dynamic impact of naturalresources, technological innovations and economic growth on ecological footprint: an advanced panel data estimation. Resources Policy, 69, 101817. https://doi.org/10.1016/j.resourpol.2020.101817

  • Ahmed, Z., Nathaniel, S. P., & Shahbaz, M. (2021). The criticality of information and communication technology and human capital in environmental sustainability: Evidence from latin American and Caribbean countries. Journal of Cleaner Production, 286, 125529.

    Article  Google Scholar 

  • Al-Iriani, M. A. (2006). Energy–GDP relationship revisited: An example from GCC countries using panel causality. Energy Policy, 34(17), 11. https://doi.org/10.1016/j.enpol.2005.07.005.

    Article  Google Scholar 

  • Al-Mulali, U., Tang, C. F., & Ozturk, I. (2015). 10). Estimating the Environment Kuznets curve hypothesis: Evidence from Latin America and the Caribbean countries. Renewable and Sustainable Energy Reviews, 50, 918–924. https://doi.org/10.1016/J.RSER.2015.05.017.

    Article  CAS  Google Scholar 

  • Alsaleh, M., & Abdul-Rahim, A. (2022). An evaluation of bioenergy industry sustainability impacts on forest degradation: Evidence from European union economies. Environment Development and Sustainability, 24(2), 1738–1760. https://doi.org/10.1007/s10668-021-01505-x.

    Article  Google Scholar 

  • Alvarado, R., & Toledo, E. (2017). Environmental degradation and economic growth: Evidence for a develo** country. Environment Development and Sustainability, 19(4), 1205–1218. https://doi.org/10.1007/s10668-016-9790-y.

    Article  Google Scholar 

  • Alvarado, R., Tillaguango, B., Dagar, V., Ahmad, M., Işık, C., Méndez, P., & Toledo, E. (2021). Ecological footprint, economic complexity and natural resources rents in Latin America: Empirical evidence using quantile regressions. Journal of Cleaner Production, 318, 128585.

    Article  Google Scholar 

  • Andreu, M. G. N., Font-Barnet, A., & Roca, M. E. (2021). Wellness tourism—new challenges and opportunities for tourism in Salou. Sustainability, 13(15), 8246. https://doi.org/10.3390/su13158246.

    Article  Google Scholar 

  • Awosusi, A. A., Adebayo, T. S., Altunta¸s, M., Agyekum, E. B., Zawbaa, H. M., & Kamel, S. (2022). The dynamic impact of biomass and natural resources on ecological footprint in brics economies: A quantile regression evidence. Energy Reports, 8, 1979–1994. https://doi.org/10.1016/j.egyr.2022.01.022.

    Article  Google Scholar 

  • Bandura, R. (2020). Sustainable infrastructure in the amazon: Connecting environmental preservation with governance, security, and economic development. Center for Strategic & International Studies.

  • Bansal, S., Sharma, G. D., Rahman, M. M., Yadav, A., & Garg, I. (2021). Nexus between environmental, social and economic development in south asia: Evidence from econometric models. Heliyon, 7(1), e05965. https://doi.org/10.1016/j.heliyon.2021.e05965.

    Article  Google Scholar 

  • Bausch, T., Schröder, T., Tauber, V., & Lane, B. (2021). Sustainable tourism: The elephant in the room. Sustainability, 13(15), 8376. https://doi.org/10.3390/su13158376.

    Article  Google Scholar 

  • Berrios, F., Campbell, D., & Ortiz, M. (2018). Energy-based indicators for evaluating ecosystem health: A case study of three benthic ecosystem networks influenced by coastal upwelling in northern Chile (se pacific coast). Ecological Indicators, 95, 379–393. https://doi.org/10.1016/j.ecolind.2018.07.055.

    Article  Google Scholar 

  • Bhattarai, M., & Hammig, M. (2001). 6). Institutions and the environmental Kuznets Curve for deforestation: A crosscountry analysis for Latin America, Africa and Asia. World Development, 29 (6), 995–1010. https://doi.org/10.1016/S0305-750X(01)00019-5.

  • Bi, M., Yao, C., **e, G., Liu, J., & Qin, K. (2021a). Improvement and application of the three-dimensional ecological footprint model. Ecological Indicators, 125, 107480. https://doi.org/10.1016/j.ecolind.2021.107480.

    Article  Google Scholar 

  • Bi, M., Yao, C., **e, G., Liu, J., & Qin, K. (2021b). Improvement and application of the three-dimensional ecological footprint model. Ecological Indicators, 125. https://doi.org/10.1016/j.ecolind.2021.107480.

  • Bibi, F., & Jamil, M. (2021). Testing environment kuznets curve (ekc) hypothesis in different regions. Environmental Science and Pollution Research, 28(11), 13581–13594. https://doi.org/10.1007/s11356-020-11516-2.

    Article  CAS  Google Scholar 

  • Caravaggio, N. (2020). Economic growth and the forest development path: A theoretical re-assessment of the environmental kuznets curve for deforestation. Forest Policy and Economics, 118, 102259. https://doi.org/10.1016/j.forpol.2020.102259.

    Article  Google Scholar 

  • Ceddia, M. G. (2019). 2). The impact of income, land, and wealth inequality on agricultural expansion in Latin America. Proceedings of the National Academy of Sciences of the United States of America, 116 (7), 2527–2532. https://doi.org/10.1073/pnas.18148941.

  • Cetron, M. J., Davies, O., DeMicco, F., & Song, M. (2020). Sha** the future of hospitality and travel: Trends in energy, environmental, and labor force and work. International Hospitality Review. https://doi.org/10.1108/IHR-03-2020-0007.

    Article  Google Scholar 

  • Costanza, R. (2012). Ecosystem health and ecological engineering. Ecological Engineering, 45, 24–29. https://doi.org/10.1016/j.ecoleng.2012.03.023.

    Article  Google Scholar 

  • Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2021). A definition, benchmark and database of Ai for social good initiatives. Nature Machine Intelligence, 3(2), 111–115. https://doi.org/10.1038/s42256-021-00296-0.

    Article  Google Scholar 

  • Danish, Hassan, S., Baloch, M., Mahmood, N., & Zhang, J. (2019). Linking economic growth and ecological footprint through human capital and biocapacity. Sustainable Cities and Society, 47. https://doi.org/10.1016/j.scs.2019.101516.

  • Eichenauer, V. Z., Fuchs, A., & Brückner, L. (2021). The effects of trade, aid, and investment on China’s image in Latin America. Journal of Comparative Economics, 49(2), 483–498. https://doi.org/10.1016/j.jce.2020.08.005.

    Article  Google Scholar 

  • Fakher, H. A. (2019). 2). Investigating the determinant factors of environmental quality (based on ecological carbon footprint index). Environmental Science and Pollution Research 2019 26:10, 26 (10), 10276–10291. https://doi.org/10.1007/s11356-019-04452-3.

  • Fatemi, M., Rezaei-Moghaddam, K., Karami, E., Hayati, D., & Wackernagel, M. (2021). APR 16). An integrated approach of Ecological Footprint (EF) and Analytical Hierarchy Process (AHP) in human ecology: A base for planning toward sustainability. PLOS ONE, 16 (4). https://doi.org/10.1371/journal.pone.0250167.

  • FreireVinueza, C., Meneses, K., & Cuesta, G. (2021). 7). América Latina: ¿Un paraíso de la contaminación ambiental? Revista de Ciencias Ambientales, 55 (2), 1–18. https://doi.org/10.15359/rca.55-2.1.

  • Gabbi, G., Matthias, M., Patrizi, N., Pulselli, F. M., & Bastianoni, S. (2021). The biocapacity adjusted economic growth. Develo** a new indicator. Ecological Indicators, 122, 107318. https://doi.org/10.1016/j.ecolind.2020.107318.

    Article  Google Scholar 

  • Galli, A. (2015). On the rationale and policy usefulness of ecological footprint accounting: The case of Morocco. Envinronmental Science & Policy, 48, 210–224. https://doi.org/10.1016/j.envsci.2015.01.008.

    Article  Google Scholar 

  • Galli, A., Iha, K., Pires, S. M., Mancini, M. S., Alves, A., Zokai, G., Lin, D., Murthy, A., & Wackernagel, M. (2020). Assessing the ecological footprint and biocapacity of Portuguese cities: Critical results for environmental awareness and local management. Cities, 96, p102442.

    Article  Google Scholar 

  • Global Footprint Network (2015a). Open Data Platform: (No. June). Retrieved from https://www.footprintnetwork.org/

  • Global Footprint Network (2015b). Open Data Platform: (No. June). Retrieved from https://www.footprintnetwork.org/

  • Haftor, D., Costa Climent, R., & Lundström, J. (2021). How machine learning activates data network effects in business models: Theory advancement through an industrial case of promoting ecological sustainability. Journal of Business Research, 131, 196–205. https://doi.org/10.1016/j.jbusres.2021.04.015.

    Article  Google Scholar 

  • Hall, C. M., & Wood, K. J. (2021). 2). Demarketing tourism for sustainability: Degrowing tourism or moving the deckchairs on the titanic? Sustainability (Switzerland), 13 (3), 1–15. https://doi.org/10.3390/su13031585.

  • Hassan, S., **a, E., Khan, N., & Shah, S. (2019). Economic growth, natural resources, and ecological footprints: Evidence from Pakistan. Environmental Science and Pollution Research, 26(3), 2929–2938. https://doi.org/10.1007/s11356-018-3803-3.

    Article  Google Scholar 

  • Hopton, M. E., Cabezas, H., Campbell, D., Eason, T., Garmestani, A. S., Heberling, M. T., & Zanowick, M. (2010). Development of a multidisciplinary approach to assess regional sustainability. International Journal of Sustainable Development & World Ecology, 17(1), 48–56.

    Article  Google Scholar 

  • Jayashree, S., Reza, M. N. H., Malarvizhi, C. A. N., & Mohiuddin, M. (2021). Industry 4.0 implementation and triple bottom line sustainability: An empirical study on small and medium manufacturing firms. Heliyon, 7(8), e07753. https://doi.org/10.1016/j.heliyon.2021.e07753.

    Article  Google Scholar 

  • Jesemann, A. S., Matthias, V., Böhner, J., & Bechtel, B. (2022). Using neural network NO2-Predictions to Understand Air Quality changes in Urban Areas—A Case Study in Hamburg. Atmosphere, 13(11), 1929. https://doi.org/10.3390/atmos13111929.

    Article  CAS  Google Scholar 

  • Jiang, S., Lu, C., Zhang, S., Lu, X., Tsai, S. B., Wang, C. K., & Lee, C. H. (2019). Prediction of ecological pressure on resource-based cities based on an rbf neural network optimized by an improved abc algorithm. Ieee Access : Practical Innovations, Open Solutions, 7, 47423–47436. https://doi.org/10.1109/ACCESS.2019.2908662.

    Article  Google Scholar 

  • Kihombo, S., Ahmed, Z., Chen, S., Adebayo, T. S., & Kirikkaleli, D. (2021). Linking financial development, economic growth, and ecological footprint: What is the role of technological innovation? Environmental Science and Pollution Research, 28(43), 61235–61245. https://doi.org/10.1007/s11356-021-14993-1.

    Article  Google Scholar 

  • Kissinger, M., & Rees, W. (2010). Importing terrestrial biocapacity: The u.s. case and global implications. Land Use Policy, 27(2), 589–599. https://doi.org/10.1016/j.landusepol.2009.07.014.

    Article  Google Scholar 

  • Koengkan, M., Fuinhas, J., & Silva, N. (2021). Exploring the capacity of renewable energy consumption to reduce outdoor air pollution death rate in latin America and the caribbean region. Environmental Science and Pollution Research, 28(2), 1656–1674. https://doi.org/10.1007/s11356-020-10503-x.

    Article  Google Scholar 

  • Labib, S., Neema, M. N., Rahaman, Z., Patwary, S. H., & Shakil, S. H. (2018). Carbon dioxide emission and bio-capacity indexing for transportation activities: A methodological development in determining the sustainability of vehicular transportation systems. Journal of Environmental Management, 223, 57–73. https://doi.org/10.1016/j.jenvman.2018.06.010.

    Article  CAS  Google Scholar 

  • Lee, C. C., & Lee, C. C. (2022). How does green finance affect green total factor productivity? Evidence from China. Energy Economics, 107, 105863. https://doi.org/10.1016/j.eneco.2022.105863.

    Article  Google Scholar 

  • Liu, L., & Lei, Y. (2018). An accurate ecological footprint analysis and prediction for bei**g based on svm model. Ecological Informatics, 44, 33–42. https://doi.org/10.1016/j.ecoinf.2018.01.003.

    Article  Google Scholar 

  • Lu, Y., Wang, R., Zhang, Y., Su, H., Wang, P., Jenkins, A., & Squire, G. (2015). Ecosystem health towards sustainability. Ecosystem Health and Sustainability, 1(1), 1–15. https://doi.org/10.1890/EHS14-0013.1.

    Article  Google Scholar 

  • Maanan, M., Maanan, M., Karim, M., Kacem, A., Ajrhough, H., Rueff, S., & Rhinane, H., H (2019). Modelling the potential impacts of land use/cover change on terrestrial carbon stocks in north-west Morocco. International Journal of Sustainable Development & World Ecology, 26(6), 560–570.

    Article  Google Scholar 

  • Marinaro, S., Sacchi, L., & Gasparri, N. (2022). From whom and for what? Deforestation in dry chaco from local-urban inhabitants’ perception. Perspectives in Ecology and Conservation. https://doi.org/10.1016/j.pecon.2021.12.003.

    Article  Google Scholar 

  • Marti, L., & Puertas, R. (2020). Analysis of the efficiency of African countries through their ecological footprint and biocapacity. Science of the Total Environment, 722. https://doi.org/10.1016/j.scitotenv.2020.137504.

  • Moros-Ochoa, M. A., Castro-Nieto, G. Y., Quintero-Español, A., & Llorente-Portillo, C. (2022). Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks. Sustainability, 14(17), 10691. https://doi.org/10.3390/su141710691.

    Article  Google Scholar 

  • Morshed, S. R., Esraz-Ul-Zannat, M., Fattah, M. A., & Saroar, M. (2024). Assessment of the future environmentalcarrying capacity using machine learning algorithms. Ecological Indicators, 158, 111444. https://doi.org/10.1016/j.resourpol.2020.101817

  • Neagu, O. (2020). Economic complexity and ecological footprint: Evidence from the most complex economies in the world. Sustainability, 12(21), 9031. https://doi.org/10.3390/su12219031.

    Article  Google Scholar 

  • Nguyen, Q., Diaz-Rainey, I., & Kuruppuarachchi, D. (2021, mar). Predicting corporate carbon footprints for climate finance risk analyzes: A machine learning approach. Energy Economics, 95, 105129. https://doi.org/10.1016/j.eneco.2021.105129.

  • Opoku, E. E. O., Acheampong, A. O., & Aluko, O. A. (2024). Impact of rural-urban energy equality on environmental sustainability and the role of governance. Journal of Policy Modeling. https://doi.org/10.1016/j.jpolmod.2024.01.004.

    Article  Google Scholar 

  • Pabalkar, V., & Moray, R. (2019). Implication of technology on economic progress of farmers: A case of India. Asian Journal of Agriculture and Rural Development, 9(2), 179–193. https://doi.org/10.18488/journal.1005/2019.9.2/1005.2.179.193.

    Article  Google Scholar 

  • Pata, U. K., Aydin, M., & Haouas, I. (2021). Are natural resources abundance and human development a solution for environmental pressure? Evidence from top ten countries with the largest ecological footprint. Resources Policy, 70, 101923. https://doi.org/10.1016/j.resourpol.2020.101923.

    Article  Google Scholar 

  • Pontarollo, N., & Mendieta Muñoz, R. (2020). 1). Land consumption and income in Ecuador: A case of an inverted environmental Kuznets curve. Ecological Indicators, 108, 105699. https://doi.org/10.1016/j.ecolind.2019.105699.

  • Porto, N., & Ciaschi, M. (2021). Reformulating the tourism-extended environmental kuznets curve: A quantile regression analysis under environmental legal conditions. Tourism Economics, 27(5), 991–1014. https://doi.org/10.1177/1354816620912556.

    Article  Google Scholar 

  • Quintero-Español, A. (2024). AI Predict Biocapacity in LatinAmerica. Github. https://github.com/Anderson-Quintero/AI_Predict_Biocapacity_in_LatinAmerica.git.

  • Raihan, A., & Tuspekova, A. (2022, DEC). Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in brazil. JOURNAL OF ENVIRONMENTAL STUDIES AND SCIENCES, 12 (4), 794–814. https://doi.org/10.1007/s13412-022-00782-w.

  • Raihan, A., Pavel, M. I., Muhtasim, D. A., Farhana, S., Faruk, O., & Paul, A. (2023). The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innovation and Green Development, 2(1), 100035. https://doi.org/10.1016/j.igd.2023.100035.

    Article  Google Scholar 

  • Rees, W. (1992). Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environment and Urbanization, 4(2), 121–130. https://doi.org/10.1177/095624789200400212.

    Article  Google Scholar 

  • Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. (2021). Towards environmental sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, forestry, livestock and crops production in Pakistan. Ecological Indicators, 125. https://doi.org/10.1016/j.ecolind.2021.107460.

  • Roumiani, A., & Mofidi, A. (2022). Predicting ecological footprint based on global macro indicators in g-20 countries using machine learning approaches. Environmental Science and Pollution Research, 29(8), 11736–11755. https://doi.org/10.1007/s11356-021-16515-5.

    Article  Google Scholar 

  • Sharpley, R. (2021). On the need for sustainable tourism consumption. Tourist Studies, 21(1), 96–107. https://doi.org/10.1177/1468797620986087.

    Article  Google Scholar 

  • Shobande, O. A., & Ogbeifun, L. (2022). The criticality of financial development and energy consumption for environmental sustainability in OECD countries: Evidence from dynamic panel analysis. International Journal of Sustainable Development & World Ecology, 29(2), 153–163. https://doi.org/10.1080/13504509.2021.1934179.

    Article  Google Scholar 

  • Sohr, R. (2019). El Amazonas en la mira. Mensaje, 68(681), 9–12.

    Google Scholar 

  • Tamburino, L., & Bravo, G. (2021). Reconciling a positive ecological balance with human development: A quantitative assessment. Ecological Indicators, 129, 107973. https://doi.org/10.1016/j.ecolind.2021.107973.

    Article  Google Scholar 

  • Tandon, S., & Mallik, J. (2018). Links between energy usage and climate: Implications on increasing co2 emissions and carbon capture and storage. Current Science, 114(7), 1430–1437.

    Article  CAS  Google Scholar 

  • Tarek, M., Mohamed, E. K., Hussain, M. M., & Basuony, M. A. (2017). The implication of information technology on the audit profession in develo** country: Extent of use and perceived importance. International Journal of Accounting and Information Management, 25(2), 237–255. https://doi.org/10.1108/IJAIM-03-2016-0022.

    Article  Google Scholar 

  • Teh, P. L., Adebanjo, D., & Kong, D. L. (2021). Key enablers and barriers of solar paver technologies for the advancement of environmental sustainability. Heliyon, 7(10), e08189. https://doi.org/10.1016/j.heliyon.2021.e08189.

    Article  Google Scholar 

  • UNDP (2021). Sustainable development goals united nations development programme

  • Villanthenkodath, M. A., Ansari, M. A., Shahbaz, M., & Vo, X. V. (2022). Do tourism development and structural change promote environmental quality? Evidence from India. Environment Development and Sustainability, 24(4), 5163–5194. https://doi.org/10.1007/s10668-021-01654-z.

    Article  Google Scholar 

  • Wang, X., & Liu, D. (2020). The coupling coordination relationship between tourism competitiveness and economic growth of develo** countries. Sustainability, 12(6), 2350. https://doi.org/10.3390/su12062350.

    Article  Google Scholar 

  • Wang, Q., Li, S., & Li, R. (2018a). Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques. Energy, 161, 821–831. https://doi.org/10.1016/j.energy.2018.07.168.

    Article  Google Scholar 

  • Wang, Q., Li, S., & Li, R. (2018b). China’s dependency on foreign oil will exceed 80% by 2030: Develo** a novel NMGM-ARIMA to forecast China’s foreign oil dependence from two dimensions. Energy, 163, 151–167. https://doi.org/10.1016/j.energy.2018.08.127.

    Article  Google Scholar 

  • Wang, Q., Li, S., Li, R., & Ma, M. (2018c). Forecasting US shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model. Energy, 160, 378–387. https://doi.org/10.1016/j.energy.2018.07.047.

    Article  Google Scholar 

  • Wang, Q., Song, X., & Li, R. (2018d). A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting US shale oil production. Energy, 165, 1320–1331. https://doi.org/10.1016/j.envres.2021.111990.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, L., Yin, J., & Zhang, B. (2018e). 5). Assessment and prediction of environmental sustainability in China based on a modified ecological footprint model. Resources, Conservation and Recycling, 132, 301–313. https://doi.org/10.1016/j.resconrec.2017.05.003.

  • Wang, Q., Li, S., Li, R., & Jiang, F. (2022). Underestimated impact of the COVID-19 on carbon emission reduction in develo** countries–a novel assessment based on scenario analysis. Environmental Research, 204, 111990. https://doi.org/10.1016/j.envres.2021.111990.

    Article  CAS  Google Scholar 

  • Wu, M., Wei, Y., Lam, P. T., Liu, F., & Li, Y. (2019). 11). Is urban development ecologically sustainable? Ecological footprint analysis and prediction based on a modified artificial neural network model: A case study of Tian** in China. Journal of Cleaner Production, 237, 117795. https://doi.org/10.1016/j.jclepro.2019.117795.

  • Wulf, M. D. (2019). Population of WORLD 2019 - PopulationPyramid.net Retrieved from https://www.populationpyramid.net/.

  • Xu, P. (2022). Prediction of per capita ecological carrying capacity based on arima-lstm in tourism ecological footprint big data. Scientific Programming, 2022. https://doi.org/10.1155/2022/6012998.

  • Ye, Z., & Kim, M. K. (2018). Predicting electricity consumption in a building using an optimized back-propagation and levenberg–marquardt back-propagation neural network: Case study of a shop** mall in China. Sustainable Cities and Society, 42, 176–183.

    Article  Google Scholar 

  • Ye, Z., Yang, J., Zhong, N., Tu, X., Jia, J., & Wang, J. (2020). Tackling environmental challenges in pollution controls using artificial intelligence: A review. Science of the Total Environment, 699. https://doi.org/10.1016/j.scitotenv.2019.134279.

  • Zambrano-Monserrate, M. A., Ruano, M. A., Ormeño-Candelario, V., & Sanchez-Loor, D. A. (2020). Global ecological footprint and spatial dependence between countries. Journal of Environmental Management, 272, 111069. https://doi.org/10.1016/j.jenvman.2020.111069.

    Article  Google Scholar 

  • Zhou, K., Zhou, F., Chen, L., Li, H., Wang, H., & Li, J. (2024). Alleviating environmental pressure from livestock production: A livestock-resource environmental carrying capacity. Perspective in China Ecological Indicators, 160, 111800. https://doi.org/10.1016/j.ecolind.2024.111800.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David van der Woude.

Ethics declarations

Competing interests

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request. The authors have no competing interests to declare relevant to this article’s content.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Woude, D., Castro Nieto, G.Y., Moros Ochoa, M.A. et al. Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-05101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-05101-7

Keywords

Navigation