Log in

Diverse nutrient management strategies for achieving a sustainable energy-food-environment nexus in rice-rice production systems

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The double rice (rice followed by rice) production systems are often associated with poor resource use efficiency and resource degradation and the long-term sustainability of such crop** systems is uncertain in virtue of global climate change. This research links the complex relationship of energy budgeting, carbon input–output, and water use for sustainable rice production. Along with this, a novel concept of “net ecosystem economic budget (NEEB)” was taken to examine the ecological and economic viability of such crop** systems. The current study evaluated the long-term rice-rice crop** system (2006–2019) with different fertilizer management options on rice productivity, resource use efficiency (energy, carbon, and water), and net ecosystem economic budget. Farmyard manure (an organic amendment; FYM) combined with NPK fertilizer application (NPK + FYM) improved the rice yield by 34–38% compared to sole NPK application in both rice crops. The NPK + FYM application improved the energy use efficiency, net energy, output energy, energy intensity, and energy productivity by 13.6%, 34%, 37.3%, 39.3%, and 13.6% (wet season rice crop), and 20%, 39.7%, 44.6%, 29.6%, 17.7% (dry or winter season rice crop) than the sole application of inorganic sources. NPK treatments required 15.2% (wet season) and 19% (dry season) higher energy than NPK + FYM to produce a kg of grain, but NPK+FYM had a 16.7–18.4% lower C-foot print and 35.2% higher C-sustainability index. In wet and dry seasons, NEEB ranged from 95 to 392% in NPK + FYM applied plots compared to NPK application. The resource use indicators (specific energy, energy productivity, CER, and CSI) in other fertilizer application scenarios such as 150%NPK, NPK + Lime, and NPK + Zn were similar to NPK + FYM applications in many cases, but they cannot be considered as sustainable production practices in virtue of lower soil organic carbon (SOC) content and decline in productivity over the years (inference from LTFE). Thus, the adoption of a balanced dose of NPK with FYM was the most feasible alternative to get high productivity, resource use efficiency, and profit in a rice-rice system in Eastern India without compromising long-term sustainability. The above findings can support the policymakers for the popularization of climate-smart sustainable production practices for intensive rice-rice crop** systems in the majority tract of South Asia. If FYM is scarce in the region, alternative organic sources such as intercrop** with sesbania, green leaf manuring, or the use of summer pulses can be advocated to maintain the SOC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be available on request.

References

  • Ainsworth, E. A., & Long, S. P. (2021). 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 27(1), 27–49.

    Article  CAS  Google Scholar 

  • Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1 Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1–2), 81–84.

    Article  Google Scholar 

  • Basavalingaiah, K., Ramesha, Y. M., Paramesh, V., Rajanna, G. A., Jat, S. L., Dhar Misra, S., Kumar Gaddi, A., Girisha, H. C., Yogesh, G. S., Raveesha, S., & Roopa, T. K. (2020). Energy budgeting, data envelopment analysis and greenhouse gas emission from rice production system: A case study from puddled transplanted rice and direct-seeded rice system of Karnataka. India. Sustainability, 12(16), 6439.

    Article  CAS  Google Scholar 

  • Benbi, D. K. (2018). Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Science of the Total Environment, 644, 611–623.

    Article  CAS  Google Scholar 

  • Bhatt, R., Singh, P., Hossain, A., & Timsina, J. (2021). Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: Issues and technological interventions for increasing productivity and sustainability. Paddy and Water Environment, 19(3), 345–365.

    Article  Google Scholar 

  • Chaudhary, V. P., Singh, K. K., Pratibha, G., Bhattacharyya, R., Shamim, M., Srinivas, I., & Patel, A. (2017). Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation. Energy, 130, 307–317.

    Article  CAS  Google Scholar 

  • Chiaroni, D., Chiesa, V., Franzò, S., Frattini, F., & Manfredi Latilla, V. (2017). Overcoming internal barriers to industrial energy efficiency through energy audit: A case study of a large manufacturing company in the home appliances industry. Clean Technologies and Environmental Policy, 19, 1031–1046.

    Article  Google Scholar 

  • Das, I. and Pradhan, M. (2016). Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. Potassium solubilizing microorganisms for sustainable agriculture, pp. 281–291.

  • Dash, A. K., Singh, H. K., Mahakud, T., Pradhan, K. C., & Jena, D. (2015). Interaction effect of nitrogen, phosphorus, potassium with sulphur, boron and zinc on yield and nutrient uptake by rice under rice-rice crop** system in inceptisol of coastal Odisha. International Research Journal of Agricultural Science and Soil Science, 5(1), 14–21.

    Google Scholar 

  • de Mendiburu, F. (2021). Agricolae tutorial (Version 1.3–5). Universidad Nacional Agraria: La Molina, Peru.

  • Deng, J. L. (1985). Grey control system. Hua Zhong Institute of Technology Press.

    Google Scholar 

  • Dey, S., Abbhishek, K., & Swain, D. K. (2023). Resource use efficiency estimation and technology verification trial for sustainable improvement in paddy production: An action-based research. International Journal of Plant Production, 17, 337.

    Article  Google Scholar 

  • Dobermann, A., & Cassman, K. G. (2005). Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption. Science in China Series c: Life Sciences, 48, 745–758.

    CAS  Google Scholar 

  • Easton, Z.M. (2021). Soil and soil water relationships.

  • Ercin, E., & Hoekstra, A. Y. (2012). Carbon and water footprints: Concepts, methodologies and policy responses. World Water Assesment Programme, (4).

  • Erdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beetp production in Tokat province of Turkey. Energy, 32(1), 35–41.

    Article  Google Scholar 

  • Esengun, K., Erdal, G., Gündüz, O., & Erdal, H. (2007). An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renewable Energy, 32(11), 1873–1881.

    Article  Google Scholar 

  • Eslamian, S., Parvizi, S., Ostad-Ali-Askari, K. & Hossein, T. (2018). Encyclopedia of engineering geology: water.

  • FAO. (2016). Food and Agriculture Organization of the United Nations FAOSTAT Database, FAO. 1 December; www.fao.org/faostat.

  • Fei, C., Zhang, S., Li, J., Liang, B., & Ding, X. (2021). Partial substitution of rice husks for manure in greenhouse vegetable fields: Insight from soil carbon stock and aggregate stability. Land Degradation & Development, 32(14), 3962–3972.

    Article  Google Scholar 

  • Flechard, C. R., Ambus, P., Skiba, U., Rees, R. M., Hensen, A., Van Amstel, A., Van Den Pol-Van Dasselaar, A., Soussana, J. F., Jones, M., Clifton-Brown, J., & Grosz, B. (2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture, Ecosystems & Environment, 121(1–2), 135–152.

    Article  CAS  Google Scholar 

  • Garnaik, S., Samant, P. K., Mandal, M., Mohanty, T. R., Dwibedi, S. K., Patra, R. K., Mohapatra, K. K., Wanjari, R. H., Sethi, D., Sena, D. R., Sapkota, T. B., Parihar, C. M., & Nayak, H. S. (2022). Untangling the effect of soil quality on rice productivity under a 16-years long-term fertilizer experiment using conditional random forest. Computers and Electronics in Agriculture, 197, 106965.

    Article  Google Scholar 

  • Ghashghaie, M., Eslami, H., & Ostad-Ali-Askari, K. (2022). Applications of time series analysis to investigate components of Madiyan-rood river water quality. Applied Water Science, 12(8), 202.

    Article  Google Scholar 

  • Government of India (GOI). (2022). Ministry of Chemical and fertilizers. Available at: https://pib.gov.in/Pressreleaseshare.aspx?PRID=1820524

  • Hamzei, J., & Seyyedi, M. (2016). Energy use and input–output costs for sunflower production in sole and intercrop** with soybean under different tillage systems. Soil and Tillage Research, 157, 73–82.

    Article  Google Scholar 

  • He, P., Zhang, J., & Li, W. (2021). The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. Journal of Environmental Management, 293, 112837.

    Article  Google Scholar 

  • Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Mac Dowell, N., Minx, J. C., Smith, P., & Williams, C. K. (2019). The technological and economic prospects for CO2 utilization and removal. Nature, 575(7781), 87–97.

    Article  CAS  Google Scholar 

  • IPCC. (2006). Intergovernmental panel on climate change). Guidelines for national greenhouse gas inventories. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm

  • IPCC. (2019) Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use.

  • Jat, S. L., Parihar, C. M., Singh, A. K., Kumar, B., Choudhary, M., Nayak, H. S., Parihar, M. D., Parihar, N., & Meena, B. R. (2019). Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options. Science of the Total Environment, 664, 659–668.

    Article  CAS  Google Scholar 

  • Javadinejad, S., Eslamian, S., & Ostad-Ali-Askari, K. (2019). Investigation of monthly and seasonal changes of methane gas with respect to climate change using satellite data. Applied Water Science, 9(8), 180.

    Article  Google Scholar 

  • Kathrin, H., Stefanie, B., Swf, O. O., & Hans-Werner, O. (2017). Eco-innovations in the German fertilizer supply chain: Impact on the carbon footprint of fertilizers. Plant, Soil and Environment, 63(12), 531–544.

    Article  Google Scholar 

  • Khakbazan, M., Mohr, R. M., Derksen, D. A., Monreal, M. A., Grant, C. A., Zentner, R. P., Moulin, A. P., McLaren, D. L., Irvine, R. B., & Nagy, C. N. (2009). Effects of alternative management practices on the economics, energy and GHG emissions of a wheat–pea crop** system in the Canadian prairies. Soil and Tillage Research, 104(1), 30–38.

    Article  Google Scholar 

  • Khoshnevisan, B., Shariati, H. M., Rafiee, S., & Mousazadeh, H. (2014). Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 29, 316–324.

    Article  CAS  Google Scholar 

  • Kumar, B. M., & Aravindakshan, S. (2022). Carbon footprints of the Indian AFOLU (Agriculture, Forestry, and Other Land Use) sector: A review. Carbon Footprints, 2, 1B.

    Google Scholar 

  • Kumar, V., Jat, H. S., Sharma, P. C., Gathala, M. K., Malik, R. K., Kamboj, B. R., Yadav, A. K., Ladha, J. K., Raman, A., Sharma, D. K., & McDonald, A. (2018). Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agriculture, Ecosystems & Environment, 252, 132–147.

    Article  Google Scholar 

  • Kumar, V., Saharawat, Y. S., Gathala, M. K., Jat, A. S., Singh, S. K., Chaudhary, N., & Jat, M. L. (2013). Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Research, 142, 1–8.

    Article  Google Scholar 

  • Ladha, J. K., Jat, M. L., Stirling, C. M., Chakraborty, D., Pradhan, P., Krupnik, T. J., Sapkota, T. B., Pathak, H., Rana, D. S., Tesfaye, K., & Gerard, B. (2020). Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Advances in Agronomy, 163, 39–116.

    Article  Google Scholar 

  • Ladha, J. K., Pathak, H., Tirol-Padre, A., Dawe, D., & Gupta, R. K. (2003). Productivity trends in intensive rice–wheat crop** systems in Asia. Improving the Productivity and Sustainability of Rice-Wheat Systems: Issues and Impacts, 65, 45–76.

    Google Scholar 

  • Lal, R. (2004a). Carbon emission from farm operations. Environment International, 30(7), 981–990.

    Article  CAS  Google Scholar 

  • Lal, R. (2004b). Agricultural activities and the global carbon cycle. Nutrient Cycling in Agroecosystems, 70, 103–116.

    Article  CAS  Google Scholar 

  • Li, B., Fan, C. H., Zhang, H., Chen, Z. Z., Sun, L. Y., & **ong, Z. Q. (2015). Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in Southeastern China. Atmospheric Environment, 100, 10–19.

    Article  CAS  Google Scholar 

  • Li, S. H., Guo, L. J., Cao, C. G., & Li, C. F. (2021a). Integrated assessment of carbon footprint, energy budget and net ecosystem economic efficiency from rice fields under different tillage modes in central China. Journal of Cleaner Production, 295, 126398.

    Article  CAS  Google Scholar 

  • Li, S. H., Guo, L. J., Cao, C. G., & Li, C. F. (2021b). Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environmental Science and Pollution Research, 28, 5742–5754.

    Article  CAS  Google Scholar 

  • Luo, J., Huang, M. and Bai, Y. (2023). Promoting green development of agriculture based on low-carbon policies and green preferences: An evolutionary game analysis. Environment, Development and Sustainability. pp.1–28.

  • Majhi, P., Rout, K. K., Nanda, G., & Singh, M. (2021). Long term effects of fertilizer and manure application on productivity, sustainability and soil properties in a rice-rice system on Inceptisols of Eastern India. Communications in Soil Science and Plant Analysis, 52(14), 1631–1644.

    Article  CAS  Google Scholar 

  • Majumder, B., Mandal, B., Bandyopadhyay, P. K., & Chaudhury, J. (2007). Soil organic carbon pools and productivity relationships for a 34 year old rice–wheat–jute agroecosystem under different fertilizer treatments. Plant and Soil, 297, 53–67.

    Article  CAS  Google Scholar 

  • McLennon, E., Dari, B., Jha, G., Sihi, D., & Kankarla, V. (2021). Regenerative agriculture and integrative permaculture for sustainable and technology driven global food production and security. Agronomy Journal, 113(6), 4541–4559.

    Article  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators, 46, 214–223.

    Article  Google Scholar 

  • Mittal, J. P., & Dhawan, K. C. (1988). Research manual on energy requirements in agricultural sector, coordinating cell. AICRP on energy requirement in rural sector, PAU, Ludhiana, India.

  • Mittal, S., & Hariharan, V. K. (2018). Mobile-based climate services impact on farmers risk management ability in India. Climate Risk Management, 22, 42–51.

    Article  Google Scholar 

  • Nayak, A. K., Shahid, M., Nayak, A. D., Dhal, B., Moharana, K. C., Mondal, B., Tripathi, R., Mohapatra, S. D., Bhattacharyya, P., Jambhulkar, N. N., & Shukla, A. K. (2019). Assessment of ecosystem services of rice farms in eastern India. Ecological Processes, 8(1), 1–16.

    Article  Google Scholar 

  • Nayak, H. S., Parihar, C. M., Aravindakshan, S., Silva, J. V., Krupnik, T. J., McDonald, A. J., Kakraliya, S. K., Sena, D. R., Kumar, V., Sherpa, S. R., & Bijarniya, D. (2023). Pathways and determinants of sustainable energy use for rice farms in India. Energy, 272, 126986.

    Article  Google Scholar 

  • Nayak, H. S., Silva, J. V., Parihar, C. M., Kakraliya, S. K., Krupnik, T. J., Bijarniya, D., Jat, M. L., Sharma, P. C., Jat, H. S., Sidhu, H. S., & Sapkota, T. B. (2022). Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers’ practices. Field Crops Research, 275, 108328.

    Article  Google Scholar 

  • Nemecek, T., & Erzinger, S. (2005). Modelling representative life cycle inventories for Swiss arable crops (9 pp). The International Journal of Life Cycle Assessment, 10, 68–76.

    Article  CAS  Google Scholar 

  • Ostad-Ali-Askari, K., Shayannejad, M., Eslamian, S., Zamani, F., Shojaei, N., Navabpour, B., Majidifar, Z., Sadri, A., Ghasemi-Siani, Z., Nourozi, H. and Vafaei, O. (2017). Deficit irrigation: optimization models. In Handbook of drought and water scarcity (pp. 375–391). CRC Press.

  • Ostad-Ali-Askari, K. (2022). Develo** an optimal design model of furrow irrigation based on the minimum cost and maximum irrigation efficiency. Applied Water Science, 12(7), 144.

    Article  Google Scholar 

  • Pandey, D., & Agrawal, M. (2014). Carbon footprint estimation in the agriculture sector: In Assessment of Carbon Footprint in Different Industrial Sectors. Vol. 1.

  • Parihar, C. M., Meena, B. R., Nayak, H. S., Patra, K., Sena, D. R., Singh, R., Jat, S. L., Sharma, D. K., Mahala, D. M., Patra, S., & Abdallah, A. M. (2022). Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus. Energy, 254, 124243.

    Article  CAS  Google Scholar 

  • Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Research, 10, 1–7.

    Google Scholar 

  • Pishgar-Komleh, S. H., Ghahderijani, M., & Sefeedpari, P. (2012). Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33, 183–191.

    Article  Google Scholar 

  • Ramesha, G. K., Leno, N., & Radhika, N. S. (2021). Linking root phenomics, nutrient acquisition and utilisation in amaranthus with thermochemical organic fertilizer from biowaste. Rhizosphere, 20, 100426.

    Article  Google Scholar 

  • Rautaray, S. K., Mishra, A., & Verma, O. P. (2017). Energy efficiency, productivity and profitability of rice (Oryza sativa L.) based crop** systems for selected conservation practices. Archives of Agronomy and Soil Science, 63(14), 1993–2006.

    Article  Google Scholar 

  • Saad, A. A., Das, T. K., Rana, D. S., Sharma, A. R., Bhattacharyya, R., & Lal, K. (2016). Energy auditing of a maize–wheat–greengram crop** system under conventional and conservation agriculture in irrigated north-western Indo-Gangetic Plains. Energy, 116, 293–305.

    Article  Google Scholar 

  • Sapkota, T. B., Jat, M. L., Rana, D. S., Khatri-Chhetri, A., Jat, H. S., Bijarniya, D., Sutaliya, J. M., Kumar, M., Singh, L. K., Jat, R. K., & Kalvaniya, K. (2021). Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions. Scientific Reports, 11(1), 1564.

    Article  CAS  Google Scholar 

  • Sarkar, D., Baishya, L. K., Meitei, C. B., Naorem, G. C., Thokchom, R. C., Singh, J., Bhuvaneswari, S., Batabyal, K., Das, R., Padhan, D., & Rahman, F. H. (2018). Can sustainability of maize-mustard crop** system be achieved through balanced nutrient management? Field Crops Research, 225, 9–21.

    Article  Google Scholar 

  • Shambhavi, S., Kumar, R., Sharma, S. P., Verma, G., Sharma, R. P., & Sharma, S. K. (2017). Long-term effect of inorganic fertilizers and amendments on productivity and root dynamics under maize-wheat intensive crop** in an acid Alfisol. Journal of Applied and Natural Science, 9(4), 2004–2012.

    Article  CAS  Google Scholar 

  • Shang, Q., Yang, X., Gao, C., Wu, P., Liu, J., Xu, Y., Shen, Q., Zou, J., & Guo, S. (2011). Net annual global warming potential and greenhouse gas intensity in Chinese double rice-crop** systems: A 3-year field measurement in long-term fertilizer experiments. Global Change Biology, 17(6), 2196–2210.

    Article  Google Scholar 

  • Shayannejad, M., Ghobadi, M., & Ostad-Ali-Askari, K. (2022). Modeling of surface flow and infiltration during surface irrigation advance based on numerical solution of saint–venant equations using preissmann’s scheme. Pure and Applied Geophysics, 179(3), 1103–1113.

    Article  Google Scholar 

  • Singh, P., Benbi, D. K., & Verma, G. (2021). Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of a rice–wheat crop** system in Northwestern India. Journal of Soil Science and Plant Nutrition, 21, 559–577.

    Article  CAS  Google Scholar 

  • Singh, P., Singh, G., & Sodhi, G. P. S. (2019). Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy, 174, 269–279.

    Article  Google Scholar 

  • Song, K., Zhang, G., Yu, H., Huang, Q., Zhu, X., Wang, T., Xu, H., Lv, S., & Ma, J. (2021). Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. Journal of Cleaner Production, 297, 126650.

    Article  CAS  Google Scholar 

  • Soni, P., Taewichit, C., & Salokhe, V. M. (2013). Energy consumption and CO2 emissions in rainfed agricultural production systems of Northeast Thailand. Agricultural Systems, 116, 25–36.

    Article  Google Scholar 

  • Sun, R., Zhang, X. X., Guo, X., Wang, D., & Chu, H. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88, 9–18.

    Article  CAS  Google Scholar 

  • Talebmorad, H., & Ostad-Ali-Askari, K. (2022). Hydro geo-sphere integrated hydrologic model in modeling of wide basins. Sustainable Water Resources Management, 8(4), 118.

    Article  Google Scholar 

  • Tao, Y., Zhang, Y., **, X., Saiz, G., **g, R., Guo, L., Liu, M., Shi, J., Zuo, Q., Tao, H., & Lin, S. (2015). More rice with less water–evaluation of yield and resource use efficiency in ground cover rice production system with transplanting. European Journal of Agronomy, 68, 13–21.

    Article  Google Scholar 

  • Tong, C., Gao, H., Luo, S., Liu, L., & Bao, J. (2019). Impact of postharvest operations on rice grain quality: A review. Comprehensive Reviews in Food Science and Food Safety, 18(3), 626–640.

    Article  Google Scholar 

  • Tzanakakis, V. A., Chatzakis, M. K., & Angelakis, A. N. (2012). Energetic environmental and economic assessment of three tree species and one herbaceous crop irrigated with primary treated sewage effluent. Biomass and Bioenergy, 47, 115–124.

    Article  CAS  Google Scholar 

  • Wang, H., Yang, Y., Zhang, X., & Tian, G. (2015). Carbon footprint analysis for mechanization of maize production based on life cycle assessment: A case study in Jilin Province, China. Sustainability, 7(11), 15772–15784.

    Article  CAS  Google Scholar 

  • Yadav, G. S., Das, A., Lal, R., Babu, S., Meena, R. S., Saha, P., Singh, R., & Datta, M. (2018). Energy budget and carbon footprint in a no-till and mulch based rice–mustard crop** system. Journal of Cleaner Production, 191, 144–157.

    Article  Google Scholar 

  • Zhang, S., Wang, R., Yang, X., Sun, B., & Li, Q. (2016). Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol. Scientific Reports, 6(1), 39107.

    Article  CAS  Google Scholar 

  • Zhang, W., Ricketts, T. H., Kremen, C., Carney, K., & Swinton, S. M. (2007). Ecosystem services and dis-services to agriculture. Ecological Economics, 64, 253–260.

    Article  Google Scholar 

  • Zhang, Z. S., Guo, L. J., Liu, T. Q., Li, C. F., & Cao, C. G. (2015). Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice–wheat crop** systems in central China. Atmospheric Environment, 122, 636–644.

    Article  CAS  Google Scholar 

  • Zheng, J., Wang, W., Ding, Y., Liu, G., ** sites of China. Science of the Total Environment, 709, 136190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to express his sincere gratitude to AICRP on Long-term fertilizer experiment project, Odisha University of Agriculture and Technology, Bhubaneswar, India, for providing financial support for this research work. The authors extend their heartfelt thanks to the field and lab staff for their assistance during plant and soil sampling and analysis. The authors acknowledge the valuable support and guidance of Dr. AK Dash, Dr. A Mishra, Dr. RK Nayak, Dr. Debadatta Sethi, Dr. N Panda, Dr. S Soren, and Dr. B Jena, along with non-scientific staffs of the Department of Soil Science and Agricultural Chemistry, OUAT, Bhubaneswar. The first author sincerely acknowledges the establishment and maintenance of this long-term trial by Dr. AK Pal, Dr. MR Pattanaik, Dr. RK Nayak, and Dr. KK Rout. The authors would like to give special thanks to Ketan Kumar, research associate, LTFE project, for their instrumental help. The authors highly appreciate the instrumental support provided by ICAR-IARI, New Delhi. The first author also acknowledges UGC, New Delhi for UGC-JRF (Junior Research Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saheed Garnaik or Hari Sankar Nayak.

Ethics declarations

Conflict of interest

The authors declare that there are not any conflicts of interest and all the funding sources are acknowledged.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnaik, S., Samant, P.K., Mandal, M. et al. Diverse nutrient management strategies for achieving a sustainable energy-food-environment nexus in rice-rice production systems. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04737-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04737-9

Keywords

Navigation