Log in

Comparative study of straw mulching and interplanting patterns on water use efficiency and productivity of the maize-soybean crop** system

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study aimed to assess the influence of intercrop** and straw mulching on dynamics of soil water and thermal condition, with a specific emphasis on the content of inorganic nitrogen (N)—including NH4+–N and NO3–N—and, ultimately, their effects on crop yield and water-use efficiency. The experimental design employed in this study featured a split-plot arrangement of treatments, where the main plot comprised soybean (Glycine max L. Merill) monoculture (S), maize (Zea mays L.) monoculture (M), and soybean/maize intercrop (I), while subplot was comprised of various levels of straw mulch including no mulch application (M0), 4.8 t ha−1 (M1), 7.2 t ha−1 (M2), and 9.6 t ha−1 (M3). Results showed that straw mulching and planting patterns significantly affected the dry matter and grain yield of maize and soybean. Intercrop** promotes maize dry matter and yield but inhibits soybeans. Soil moisture fluctuations in the 0–30 cm soil layer are influenced by rainfall dynamics, while the 40–60 cm soil layer remains relatively stable. Increasing straw mulch positively correlates with soil moisture, with intercrop** displaying significantly higher moisture levels than monoculture. Soil temperature fluctuations decrease depth, with the 0–15 cm layer exhibiting greater variability. Straw mulching correlates with decreased soil temperature, and intercrop** significantly lowers soil temperature than monoculture. Crop water productivity increases significantly with straw mulching and intercrop**. The intercrop** with 9.6 t ha−1 straw mulch (M3I) had the highest water productivity and water use efficiency (WUE) for maize, while soybean monoculture with 9.6 t ha−1 straw mulch M3S) had higher WUE for soybean. In conclusion; straw mulching and intercrop** improve crop yield, soil moisture, water productivity, WUE and soil temperature regulation. These findings underscore the potential of these sustainable agricultural practices, offering valuable insights for guiding water-conserving and high-yield agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The original contributions provided in this study are incorporated in the article and Supplementary Material. For additional inquiries, please contact the corresponding author.

References

  • Abu-Bakar, M., Ahmad, R., Zahir, Z.A., (2014). Comparison of barley-based intercrop** system for productivity and net economic return. International Journal of Agriculture & Biology 16.

  • Ahmed, S., Raza, M. A., Zhou, T., Hussain, S., Khalid, M. H. B., Feng, L., Wasaya, A., Iqbal, N., Ahmed, A., & Liu, W. (2018). Responses of soybean dry matter production, phosphorus accumulation, and seed yield to sowing time under relay intercrop** with maize. Agronomy, 8, 282.

    Article  CAS  Google Scholar 

  • Aíza, L. G., RuÍz, B. K., Low-Pfeng, A. M., Vallejos, E. L. M., & García-Meneses, P. M. (2021). Correction to: Perceptions and sustainable actions under land degradation and climate change: The case of a remnant wetland in Mexico City. Environment, Development and Sustainability, 23, 5004–5004.

    Article  Google Scholar 

  • Anup, D., Ghosh, P., Rattan, L., Ritesh, S., & Shishomvanao, N. (2017). Soil quality effect of conservation practices in maize-rapeseed crop** system in eastern Himalaya. Land Degradation & Development, 28, 1862–1874.

    Article  Google Scholar 

  • Atif, M., Perveen, S., (2023). Maize grain nutritional quality amelioration with seed-applied thiamine and indole-3-acetic acid under arsenic toxicity. Environment, Development and Sustainability, 1–29.

  • Bozorg-Haddad, O., Sohrabi, S., Delpasand, M., & Loáiciga, H. A. (2021). Dryland farming improvement by considering the relation between rainfall variability and crop yield. Environment, Development and Sustainability, 23, 5316–5327.

    Article  Google Scholar 

  • Bu, L.-D., Liu, J.-L., Zhu, L., Luo, S.-S., Chen, X.-P., Li, S.-Q., Hill, R. L., & Zhao, Y. (2013). The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management, 123, 71–78.

    Article  Google Scholar 

  • Campbell, B.M., Beare, D.J., Bennett, E.M., Hall-Spencer, J.M., Ingram, J.S., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J.A., Shindell, D., (2017). Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and society 22.

  • Chi, G., Fang, Y., Zhu, B., Guo, N., & Chen, X. (2024). Intercrop** with Brassica juncea L. enhances maize yield and promotes phytoremediation of cadmium-contaminated soil by changing rhizosphere properties. Journal of Hazardous Materials, 461, 132727.

    Article  CAS  PubMed  Google Scholar 

  • Das, A., Ghosh, P., Verma, M., Munda, G., Ngachan, S., & Mandal, D. (2015). Tillage and residue mulching effect on productivity of maize (Zea mays)–toria (Brassica campestris) crop** system in fragile ecosystem of northeast Indian Himalayas. Experimental Agriculture, 51, 107–125.

    Article  Google Scholar 

  • Deqiang, Z., **chuan, Y., Yuting, H., Tong, L., Yuncheng, L., 2020. Tempo-spatial dynamics of AMF under maize soybean intercrop**. **生态农业学报 (中英文) 28: 631–642.

  • Du, C., Li, L., & Effah, Z. (2022). Effects of straw mulching and reduced tillage on crop production and environment: A review. Water, 14, 2471.

    Article  CAS  Google Scholar 

  • Dzvene, A. R., Tesfuhuney, W. A., Walker, S., & Ceronio, G. (2023). Optimizing the planting time and stand density of sunn hemp intercrop** for biomass productivity and competitiveness in a maize-based system. Field Crops Research, 304, 109179.

    Article  Google Scholar 

  • Fan, Z., Chai, Q., Yu, A., Zhao, C., Yin, W., Hu, F., Chen, G., Cao, W., & Coulter, J. A. (2020). Water and radiation use in maize–pea intercrop** is enhanced with increased plant density. Agronomy Journal, 112, 257–273.

    Article  Google Scholar 

  • Farooq, M., Khan, I., Nawaz, A., Cheema, M. A., & Siddique, K. H. (2020). Using sorghum to suppress weeds in autumn planted maize. Crop Protection, 133, 105162.

    Article  Google Scholar 

  • Feng, L., Raza, M. A., Shi, J., Ansar, M., Titriku, J. K., Meraj, T. A., Shah, G. A., Ahmed, Z., Saleem, A., & Liu, W. (2020). Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercrop** system. European Journal of Agronomy, 118, 126092.

    Article  CAS  Google Scholar 

  • Gebeyhu, B., Markos, G., (2023). Assessment of soil mulching field management, and deficit irrigation effect on productivity of watermelon varieties, and AquaCrop model validation. Heliyon 9.

  • Gitari, H. I., Gachene, C. K., Karanja, N. N., Kamau, S., Nyawade, S., Sharma, K., & Schulte-Geldermann, E. (2018). Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercrop** systems. Agricultural Water Management, 208, 59–66.

    Article  Google Scholar 

  • Grassini, P., & Cassman, K. G. (2012). High-yield maize with large net energy yield and small global warming intensity. Proceedings of the National Academy of Sciences, 109, 1074–1079.

    Article  ADS  CAS  Google Scholar 

  • He, M.-Y., Ren, T. X., **, Z. D., Deng, L., Liu, H. J., Cheng, Y. Y., Li, Z. Y., Liu, X. X., Yang, Y., & Chang, H. (2023). Precise analysis of potassium isotopic composition in plant materials by multi-collector inductively coupled plasma mass spectrometry. Spectrochimica Acta Part b: Atomic Spectroscopy, 209, 106781.

    Article  CAS  Google Scholar 

  • Inal, A., Gunes, A., Zhang, F., & Cakmak, I. (2007). Peanut/maize intercrop** induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry, 45, 350–356.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, B., Khan, I., Javed, Q., Alabbosh, K. F., Inamullah, Z. Z., & Rehman, A. (2023). The high phosphorus incorporation promotes the soil enzymatic activity, nutritional status, and biomass of the crop. Polish J. Environ. Stud, 32, 2125–2139.

    Article  CAS  Google Scholar 

  • Jordán, A., Zavala, L. M., & Gil, J. (2010). Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. CATENA, 81, 77–85.

    Article  Google Scholar 

  • Juárez-Hernández, S., & Sheinbaum Pardo, C. (2020). Assessing the potential of alternative farming practices for sustainable energy and water use and GHG mitigation in conventional maize systems. Environment, Development and Sustainability, 22, 8029–8059.

    Article  Google Scholar 

  • Júnior, G.d.N.A., de Morais, J.E.F., Neto, A.J.S., de Souza, L.S.B., Alves, C.P., da Silva, G.Í.N., Leite, R.M.C., da Silva, M.J., Jardim, A.M.d.R.F., de Assunção Montenegro, A.A.,. (2023). Use of intercrop** and mulch to improve the water and natural resources use efficiencies of forage cactus and millet production in a semiarid region. Field Crops Research, 304, 109171.

    Article  Google Scholar 

  • Kan, Y., Kan, H., Bai, Y., Zhang, S., & Gao, Z. (2023a). Effective and environmentally safe self-antimildew strategy to simultaneously improve the mildew and water resistances of soybean flour-based adhesives. Journal of Cleaner Production, 392, 136319.

    Article  CAS  Google Scholar 

  • Kan, Y., Li, J., Zhang, S., & Gao, Z. (2023b). Novel bridge assistance strategy for tailoring crosslinking networks within soybean-meal-based biocomposites to balance mechanical and biodegradation properties. Chemical Engineering Journal, 472, 144858.

    Article  CAS  Google Scholar 

  • Khan, I., Iqbal, B., Khan, A.A., Inamullah, Rehman, A., Fayyaz, A., Shakoor, A., Farooq, T.H., Wang, L.-X., (2022). The Interactive Impact of Straw Mulch and Biochar Application Positively Enhanced the Growth Indexes of Maize (Zea mays L.) Crop. Agronomy 12, 2584.

  • Khan, I., Chen, T., Farooq, M., Luan, C., Wu, Q., Wanning, D., Xu, S., & Li-xue, W. (2021). The residual impact of straw mulch and biochar amendments on soil physiochemical properties and yield of maize under rainfed system. Agronomy Journal, 113, 1102–1120.

    Article  CAS  Google Scholar 

  • Khan, I., Luan, C., Qi, W., Wang, X., Yu, B., Rehman, A., Khan, A. A., Khan, J., & Li-xue, W. (2023). The residual impact of straw mulch and biochar amendments on grain quality and amino acid contents of rainfed maize crop. Journal of Plant Nutrition, 46, 1283–1295.

    Article  CAS  Google Scholar 

  • Kuotsu, K., Das, A., Lal, R., Munda, G., Ghosh, P., & Ngachan, S. (2014). Land forming and tillage effects on soil properties and productivity of rainfed groundnut (Arachis hypogaea L.)–rapeseed (Brassica campestris L.) crop** system in northeastern India. Soil and Tillage Research, 142, 15–24.

    Article  Google Scholar 

  • Li, C., Hoffland, E., Kuyper, T. W., Yu, Y., Zhang, C., Li, H., Zhang, F., & van der Werf, W. (2020). Syndromes of production impact yield gains in intercrop**. Nature Plants, 6, 653–660.

    Article  PubMed  Google Scholar 

  • Li, L., Sun, J., Zhang, F., Li, X., Rengel, Z., & Yang, S. (2001). Wheat/maize or wheat/soybean strip intercrop**: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 71, 173–181.

    Article  Google Scholar 

  • Li, T., Wang, P., Li, Y., Li, L., Kong, R., Fan, W., Yin, W., Fan, Z., Wu, Q., & Zhai, Y. (2023a). Effects of configuration mode on the light-response characteristics and dry matter accumulation of cotton under jujube-cotton intercrop**. Applied Sciences, 13, 2427.

    Article  CAS  Google Scholar 

  • Li, W., Wang, C., Liu, H., Wang, W., Sun, R., Li, M., Shi, Y., Zhu, D., Du, W., & Ma, L. (2023b). Fine root biomass and morphology in a temperate forest are influenced more by canopy water addition than by canopy nitrogen addition. Frontiers in Ecology and Evolution, 11, 1132248.

    Article  Google Scholar 

  • Li, Y., Zhang, W., Ma, L., Wu, L., Shen, J., Davies, W. J., Oenema, O., Zhang, F., & Dou, Z. (2014). An analysis of C hina’s grain production: Looking back and looking forward. Food and Energy Security, 3, 19–32.

    Article  Google Scholar 

  • Lin, X., Qi, L., Pan, H., & Sharp, B. (2022). COVID-19 pandemic, technological progress and food security based on a dynamic CGE model. Sustainability, 14, 1842.

    Article  CAS  Google Scholar 

  • Liu, X., Rahman, T., Song, C., Yang, F., Su, B., Cui, L., Bu, W., & Yang, W. (2018). Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercrop**. Field Crops Research, 224, 91–101.

    Article  Google Scholar 

  • Lu, L., Zhai, X., Li, X., Wang, S., Zhang, L., Wang, L., **, X., Liang, L., Deng, Z., & Li, Z. (2022). Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains. Nature Communications, 13, 4672.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad, A.K., (2020). Effectiveness of various types of mulching on soil moisture and temperature regimes under rainfed soybean cultivation.

  • Mu, L., Su, K., Zhou, T., & Yang, H. (2023). Yield performance, land and water use, economic profit of irrigated spring wheat/alfalfa intercrop** in the inland arid area of northwestern China. Field Crops Research, 303, 109116.

    Article  Google Scholar 

  • Namazi, Y., Rezaei-Chiyaneh, E., Siavash Moghaddam, S., & Leonardo Battaglia, M. (2022). The effects of microbial inoculation and intercrop** on yield and active ingredients of savory (Satureja hortensis L.) intercropped with common bean (Phaseolus vulgaris L.). International Journal of Environmental Science and Technology, 19, 8273–8288.

    Article  CAS  Google Scholar 

  • Neugschwandtner, R. W., & Kaul, H.-P. (2014). Sowing ratio and N fertilization affect yield and yield components of oat and pea in intercrops. Field Crops Research, 155, 159–163.

    Article  Google Scholar 

  • Ngangom, B., Das, A., Lal, R., Idapuganti, R. G., Layek, J., Basavaraj, S., Babu, S., Yadav, G. S., & Ghosh, P. K. (2020). Double mulching improves soil properties and productivity of maize-based crop** system in eastern Indian Himalayas. International Soil and Water Conservation Research, 8, 308–320.

    Article  Google Scholar 

  • Niu, J., Liu, Q., Kang, S., & Zhang, X. (2018). The response of crop water productivity to climatic variation in the upper-middle reaches of the Heihe River basin, Northwest China. Journal of Hydrology, 563, 909–926.

    Article  ADS  Google Scholar 

  • Pan, F., Tang, J., & Chen, B. (2022). Cover crop effects on soil N retention and supply in fertilizer-intensive crop** systems (A Review). Eurasian Soil Science, 55, 1278–1294.

    Article  ADS  CAS  Google Scholar 

  • Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., & Prokeš, R. (2021). The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil and Tillage Research, 205, 104748.

    Article  Google Scholar 

  • Qiu, D., Zhu, G., Bhat, M. A., Wang, L., Liu, Y., Sang, L., Lin, X., Zhang, W., & Sun, N. (2023). Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. Journal of Hydrology, 624, 129918.

    Article  CAS  Google Scholar 

  • Raza, M.A., Yasin, H.S., Gul, H., Qin, R., Din, A.M.U., Khalid, M.H.B., Hussain, S., Gitari, H., Saeed, A., Wang, J., (2022). Maize/soybean strip intercrop** produces higher crop yields and saves water under semi-arid conditions. Frontiers in Plant Science 13.

  • Raza, M. A., Gul, H., Wang, J., Yasin, H. S., Qin, R., Khalid, M. H. B., Naeem, M., Feng, L. Y., Iqbal, N., & Gitari, H. (2021). Land productivity and water use efficiency of maize-soybean strip intercrop** systems in semi-arid areas: A case study in Punjab Province. Pakistan. Journal of Cleaner Production, 308, 127282.

    Article  Google Scholar 

  • Ren, J., Zhang, L., Duan, Y., Zhang, J., Evers, J. B., Zhang, Y., Su, Z., & van der Werf, W. (2019). Intercrop** potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 240, 168–176.

    Article  Google Scholar 

  • Saha, R., & Ghosh, P. (2010). Effect of land configuration on water economy, crop yield and profitability under rice (Oryza sativa)-based crop** system in north-east India. Indian Journal of Agricultural Sciences, 80, 16–20.

    Google Scholar 

  • Sgubin, G., Swingedouw, D., García de Cortázar-Atauri, I., Ollat, N., & Van Leeuwen, C. (2019). The impact of possible decadal-scale cold waves on viticulture over Europe in a context of global warming. Agronomy, 9, 397.

    Article  CAS  Google Scholar 

  • Shanmugam, S., Hefner, M., Pelck, J. S., Labouriau, R., & Kristensen, H. L. (2022). Complementary resource use in intercropped faba bean and cabbage by increased root growth and nitrogen use in organic production. Soil Use and Management, 38, 729–740.

    Article  Google Scholar 

  • Siczek, A., Frąc, M., Wielbo, J., & Kidaj, D. (2018). Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. International Journal of Environmental Science and Technology, 15, 755–764.

    Article  CAS  Google Scholar 

  • Tan, M., Gou, F., Stomph, T. J., Wang, J., Yin, W., Zhang, L., Chai, Q., & van der Werf, W. (2020). Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercrop**: Model development and application to wheat-maize intercrop**. Field Crops Research, 246, 107613.

    Article  Google Scholar 

  • Tian, H., Huang, N., Niu, Z., Qin, Y., Pei, J., & Wang, J. (2019). Map** winter crops in China with multi-source satellite imagery and phenology-based algorithm. Remote Sensing, 11, 820.

    Article  ADS  Google Scholar 

  • Tian, H., Pei, J., Huang, J., Li, X., Wang, J., Zhou, B., Qin, Y., & Wang, L. (2020). Garlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in northern china. Remote Sensing, 12, 3539.

    Article  ADS  Google Scholar 

  • Wang, B., van Dam, J., Yang, X., Ritsema, C., Du, T., & Kang, S. (2023a). Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain. Agricultural Water Management, 280, 108229.

    Article  Google Scholar 

  • Wang, L., Yu, B., Ji, J., Khan, I., Li, G., Rehman, A., Liu, D., & Li, S. (2023b). Assessing the impact of biochar and nitrogen application on yield, water-nitrogen use efficiency and quality of intercropped maize and soybean. Frontiers in Plant Science, 14, 1171547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Akhtar, K., Ren, G., Yang, G., Feng, Y., & Yuan, L. (2019). Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Science of the Total Environment, 652, 471–482.

    Article  ADS  PubMed  Google Scholar 

  • Wang, X., Wang, T., Xu, J., Shen, Z., Yang, Y., Chen, A., Wang, S., Liang, E., & Piao, S. (2022). Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nature Ecology & Evolution, 6, 890–899.

    Article  Google Scholar 

  • Wang, X., Yang, L., Steinberger, Y., Liu, Z., Liao, S., & **e, G. (2013). Field crop residue estimate and availability for biofuel production in China. Renewable and Sustainable Energy Reviews, 27, 864–875.

    Article  Google Scholar 

  • Wang, Z., Dong, B., Stomph, T. J., Evers, J. B., van der Putten, P. E., Ma, H., Missale, R., & van der Werf, W. (2023c). Temporal complementarity drives species combinability in strip intercrop** in the Netherlands. Field Crops Research, 291, 108757.

    Article  Google Scholar 

  • Wei, W., Liu, T., Shen, L., Wang, X., Zhang, S., & Zhang, W. (2022). Effect of Maize (Zeal mays) and Soybean (Glycine max) Intercrop** on Yield and Root Development in **njiang. China. Agriculture, 12, 996.

    Article  Google Scholar 

  • Xue, Y., Bai, X., Zhao, C., Tan, Q., Li, Y., Luo, G., Wu, L., Chen, F., Li, C., & Ran, C. (2023). Spring photosynthetic phenology of Chinese vegetation in response to climate change and its impact on net primary productivity. Agricultural and Forest Meteorology, 342, 109734.

    Article  Google Scholar 

  • Yin, W., Fan, Z., Hu, F., Yu, A., Zhao, C., Chai, Q., & Coulter, J. A. (2019). Innovation in alternate mulch with straw and plastic management bolsters yield and water use efficiency in wheat-maize intercrop** in arid conditions. Scientific Reports, 9, 6364.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yin, W., Gou, Z., Fan, Z., Hu, F., Fan, H., Zhao, C., Yu, A., & Chai, Q. (2022). No-tillage with straw mulching and re-using old film boost crop yields and mitigate soil N2O emissions in wheat-maize intercrop** at arid irrigated regions. Field Crops Research, 289, 108706.

    Article  Google Scholar 

  • Yin, W., Yu, A., Chai, Q., Hu, F., Feng, F., & Gan, Y. (2015). Wheat and maize relay-planting with straw covering increases water use efficiency up to 46%. Agronomy for Sustainable Development, 35, 815–825.

    Article  Google Scholar 

  • Zhang, C., Jia, L., Shen, Y., Ma, C., (2019). The Influence of Straw Mulch on the Transport and Distribution of Water and Salt in Indirect Drip Irrigation with Saline Water. Sustainable Development of Water Resources and Hydraulic Engineering in China: Proceedings for the 2016 International Conference on Water Resource and Hydraulic Engineering. Springer, pp. 227–239.

  • Zhang, D., Sun, Z., Feng, L., Bai, W., Yang, N., Zhang, Z., Du, G., Feng, C., Cai, Q., & Wang, Q. (2020). Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercrop**. Field Crops Research, 257, 107926.

    Article  Google Scholar 

  • Zhang, G., Yang, Z., & Dong, S. (2011). Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercrop** system. Field Crops Research, 124, 66–73.

    Article  Google Scholar 

  • Zheng, J., Fan, J., Zhang, F., Yan, S., Guo, J., Chen, D., & Li, Z. (2018). Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China. Journal of Arid Land, 10, 794–808.

    Article  Google Scholar 

  • Zheng, J., Wang, H., Fan, J., Zhang, F., Guo, J., Liao, Z., & Zhuang, Q. (2021). Wheat straw mulching with nitrification inhibitor application improves grain yield and economic benefit while mitigating gaseous emissions from a dryland maize field in northwest China. Field Crops Research, 265, 108125.

    Article  Google Scholar 

  • Zhengbin, Z., **, X., Ziyuan, D., 2015. Food security should be the ultimate goal of agricultural modernization in China. **生态农业学报 (中英文 ) 23, 1215–1219.

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through Large Groups Project under grant number RGP2/491/44.

Funding

Funding for this research was provided by the Natural Science foundation of Liaoning province under grant Number 2019-ZD-0705, and Large Groups Project at King Khalid University Saudi Arabia under grant number RGP2/489/44.

Author information

Authors and Affiliations

Authors

Contributions

S.L and I.K formulated the concepts and authored the primary manuscript. S.L contributed to the laboratory analysis. K.F.A, L.C I.K, R.S and A.R thoroughly reviewed and edited the manuscript in its current form. K. A. K assisted in the revision and editing process, while L.W provided support in revisions and project administration.

Corresponding authors

Correspondence to Lixue Wang or Ismail Khan.

Ethics declarations

Conflict of interest

The authors assert that the research was carried out without any commercial or financial affiliations that might be perceived as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 737 kb)

Supplementary file2 (DOCX 37 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, L., Khan, I. et al. Comparative study of straw mulching and interplanting patterns on water use efficiency and productivity of the maize-soybean crop** system. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04617-2

Keywords

Navigation