Log in

Climate change vulnerability and multidimensional poverty in flood prone rural areas of Punjab, Pakistan: an application of multidimensional poverty index and livelihood vulnerability index

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Flooding is considered the most pervasive risk in climate hazards. Flooding causes millions of peoples displacement and raises poverty in flood affected low income communities particularly reside in most hazards prone develo** countries like Pakistan. Objective of this study is to examine the association in climate change vulnerability and multidimensional poverty in two districts flood prone rural communities of Punjab, Pakistan. In this research work collected data of 480 households was used where livelihood and climate change vulnerability indices were applied for empirical estimation of climate vulnerability levels. Poverty levels were estimated through the application of multidimensional poverty index based on the initiatives of human development, Oxford poverty and United Nation Development Program. Estimates indicated almost half population of research area collapse lower than the threshold of multidimensional poverty. Rajanpur district was estimated higher intensity of poverty and higher number of population involved multidimensional poverty rather than Muzaffargarh. Moreover, Rajanpur district considered much deprived in the dimensions of poverty like living standard, health and education. Regarding climate change vulnerability Muzaffargarh lagged at the back in livelihood strategies dimensions, food, socio-demographic profile and social networks while Rajanpur considered much vulnerable in the health, financial assets and natural assets dimensions. In the overall conclusions related to flood disasters Rajanpur district more vulnerable than Muzaffargarh and study estimated significant and positive association in climate change vulnerability indices and multidimensional poverty index. Inadequate formal schooling and nonappearance of climate change vulnerability assessment in the study area more possibility of raises higher severity of multidimensional poverty. Policy concerned relevant authorities need to apply the analysis of poverty assessment about vulnerability of climate change. Formal schooling must provided to inhabited population to raising capabilities of decision-making, productivity, job opportunities, information access and level of awareness. Moreover, flood risk mitigation policy measures need to applied through flood defense and hotspots identification where poverty and flood risks occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Provincial Disaster Management Authority.

References

  • Abbas Khan, K., Zaman, K., Shoukry, A. M., Sharkawy, A., Gani, S., Sasmoko, J., Khan, A., & Hishan, S. S. (2019). Natural disasters and economic losses: controlling external migration, energy and environmental resources, water demand, and financial development for global prosperity. Environmental Science and Pollution Research, 26, 14287–14299.

    Google Scholar 

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281.

    Google Scholar 

  • Adu, D. T., Kuwornu, J. K., Anim-Somuah, H., & Sasaki, N. (2018). Application of livelihood vulnerability index in assessing smallholder maize farming households’ vulnerability to climate change in Brong-Ahafo region of Ghana. Kasetsart Journal of Social Sciences, 39(1), 22–32.

    Google Scholar 

  • Aguilar, G. R., & Sumner, A. (2020). Who are the world’s poor? A new profile of global multidimensional poverty. World Development, 126, 104716.

    Google Scholar 

  • Ahmad, D., & Afzal, M. (2020a). Climate change adaptation impact on cash crop productivity and income in Punjab province of Pakistan. Environmental Science and Pollution Research, 27, 30767–30777.

    CAS  Google Scholar 

  • Ahmad, D., & Afzal, M. (2020b). Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan. Environmental Science and Pollution Research, 27(13), 15375–15387.

    Google Scholar 

  • Ahmad, D., & Afzal, M. (2021a). Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan. Environment, Development and Sustainability, 23, 11406–11426.

    Google Scholar 

  • Ahmad, D., & Afzal, M. (2021). Impact of violent conflicts and environmental hazards on pastoral sustainable development in Punjab, Pakistan. Environment, Development and Sustainability, 24, 1–22.

    Google Scholar 

  • Ahmad, D., Afzal, M., & Rauf, A. (2019). Analysis of wheat farmers’ risk perceptions and attitudes: Evidence from Punjab. Pakistan. Natural Hazards, 95(3), 845–861.

    Google Scholar 

  • Ahmad, D., Afzal, M., & Rauf, A. (2021). Flood hazards adaptation strategies: A gender-based disaggregated analysis of farm-dependent Bait community in Punjab, Pakistan. Environment, Development and Sustainability, 23, 865–886.

    Google Scholar 

  • Ahmad, D., Kanwal, M., & Afzal, M. (2022). Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index. Environment, Development and Sustainability, 25, 1–29.

    Google Scholar 

  • Aksoy, Ö. K. (2022). Predicting the potential distribution area of the Platanus orientalis L. in Turkey today and in the future. Sustainability, 14(18), 11706.

    Google Scholar 

  • Alam, G. M. (2017). Livelihood cycle and vulnerability of rural households to climate change and hazards in Bangladesh. Environmental Management, 59(5), 777–791.

    Google Scholar 

  • Aldrich, D. P. (2019). Challenges to coordination: Understanding intergovernmental friction during disasters. International Journal of Disaster Risk Science, 10, 306–316.

    Google Scholar 

  • Alkire, S., & Foster, J. (2011). Understandings and misunderstandings of multidimensional poverty measurement. The Journal of Economic Inequality, 9, 289–314.

    Google Scholar 

  • Alkire, S., Nogales, R., Quinn, N. N., & Suppa, N. (2021). Global multidimensional poverty and COVID-19: A decade of progress at risk? Social Science & Medicine, 291, 114457.

    Google Scholar 

  • Alkire, S., Roche, J. M., & Vaz, A. (2017). Changes over time in multidimensional poverty: Methodology and results for 34 countries. World Development, 94, 232–249.

    Google Scholar 

  • Ambelu, A., Birhanu, Z., Kassahun, W., & Jimma, E. (2017). Resilience Dimensions of the Effects of Recurrent Droughts in Borana Zone, Southern Ethiopia. Horn of Africa Resilience Innovation Lab (HoA RILab), Jimma University, Ethiopia.

  • Angelakis, A. N., Antoniou, G., Voudouris, K., Kazakis, N., Dalezios, N., & Dercas, N. (2020). History of floods in Greece: Causes and measures for protection. Natural Hazards, 101, 833–852.

    Google Scholar 

  • Ashok, K. R., & Sasikala, C. (2012). Farmers’ vulnerability to rainfall variability and technology adoption in rain-fed tank irrigated agriculture. Agricultural Economics Research Review, 25(2), 267–278.

    Google Scholar 

  • Awan, A., & Bilgili, F. (2022). Energy poverty trends and determinants in Pakistan: Empirical evidence from eight waves of HIES 1998–2019. Renewable and Sustainable Energy Reviews, 158, 112157.

    Google Scholar 

  • Awan, M. S., & Aslam, M. A. (2011). Multidimensional poverty in Pakistan: Case of Punjab province. Journal of Economics and Behavioral Studies, 3(2), 133–144.

    Google Scholar 

  • Balgah, R. A., Bang, H. N., & Fondo, S. A. (2019). Drivers for co** with flood hazards: Beyond the analysis of single cases. Jàmbá: Journal of Disaster Risk Studies, 11(1), 1–9.

    Google Scholar 

  • Birkmann, J., Jamshed, A., McMillan, J. M., Feldmeyer, D., Totin, E., Solecki, W., & Alegría, A. (2022). Understanding human vulnerability to climate change: A global perspective on index validation for adaptation planning. Science of The Total Environment, 803, 150065.

    CAS  Google Scholar 

  • Bodoque, J. M., Díez-Herrero, A., Amérigo, M., García, J. A., & Olcina, J. (2019). Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: A pre-post survey design. Journal of Hydrology, 568, 769–779.

    Google Scholar 

  • BOS Punjab. (2021). Annual Statistics 2021, Bureau of Statistics Lahore Punjab, Government of Pakistan.

  • Bubeck, P., Kreibich, H., Penning-Rowsell, E. C., Botzen, W. J. W., de Moel, H., & Klijn, F. (2017). Explaining differences in flood management approaches in Europe and in the USA–a comparative analysis. Journal of Flood Risk Management, 10(4), 436–445.

    Google Scholar 

  • Bukhari, S. I. A., & Rizvi, S. H. (2015). Impact of floods on women: With special reference to flooding experience of 2010 flood in Pakistan. Journal of Geography & Natural Disasters, 5(2), 1–5.

    Google Scholar 

  • Butt, T. A., McCarl, B. A., Angerer, J., Dyke, P. T., & Stuth, J. W. (2005). The economic and food security implications of climate change in Mali. Climatic Change, 68, 355–378.

    Google Scholar 

  • Carney, P. (1992). The concept of poverty. Public Health Nursing, 9(2), 74–80.

    CAS  Google Scholar 

  • Cetin, M., Sevik, H., Koc, I., & Cetin, I. Z. (2023). The change in biocomfort zones in the area of Muğla province in near future due to the global climate change scenarios. Journal of Thermal Biology, 112, 103434.

    Google Scholar 

  • Chakraborty, J., Collins, T. W., Montgomery, M. C., & Grineski, S. E. (2014). Social and spatial inequities in exposure to flood risk in Miami. Florida. Natural Hazards Review, 15(3), 04014006.

    Google Scholar 

  • Chaudhry, I. S., Malik, S., & Ashraf, M. (2006). Rural poverty in Pakistan: some related concepts, issues and empirical analysis. Pakistan Economic and Social Review, 44, 259–276.

    Google Scholar 

  • CRED. (2020). EM-DAT database. http://www.emdat.be/

  • Das, B., Pal, S. C., Malik, S., & Chakrabortty, R. (2019). Living with floods through geospatial approach: A case study of Arambag CD Block of Hugli District, West Bengal. India. SN Applied Sciences, 1(4), 1–10.

    CAS  Google Scholar 

  • De, L. (2017). Poverty and its measurement. Instituto Nacional De Estadistica, (pp.1–34).

  • Decancq, K., & Lugo, M. A. (2012). Inequality of wellbeing: A multidimensional approach. Economica, 79(316), 721–746.

    Google Scholar 

  • Diakakis, M., Priskos, G., & Skordoulis, M. (2018). Public perception of flood risk in flash flood prone areas of eastern Mediterranean: The case of Attica region in Greece. International Journal of Disaster Risk Reduction, 28, 404–413.

    Google Scholar 

  • Donohue, C., & Biggs, E. (2015). Monitoring socio-environmental change for sustainable development: Develo** a multidimensional livelihoods index (MLI). Applied Geography, 62, 391–403.

    Google Scholar 

  • Dotter, C., & Klasen, S. (2017). The multidimensional poverty index: Achievements, conceptual and empirical issues (No. 233). Discussion Papers.

  • Dougherty, S., Baneman, R., Trousdale, P., & Valent, N. (2022). How regional federal reserve banks can contend with economic risk from climate change.

  • Douglas, I., Alam, K., Maghenda, M., Mcdonnell, Y., McLean, L., & Campbell, J. (2008). Unjust waters: Climate change, flooding and the urban poor in Africa. Environment and Urbanization, 20(1), 187–205.

    Google Scholar 

  • Eckstein, D., Künzel, V., & Schäfer, L. (2021). The global climate risk index 2021. Germanwatch: Bonn.

    Google Scholar 

  • Eckstein, D., Künzel, V., Schäfer, L., & Winges, M. (2019). Global climate risk index 2020 (pp. 1–50). Germanwatch: Bonn.

    Google Scholar 

  • Field, C. B. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Forni, M. S., Fox, B. D., Gunasekera, R., Khan, H., Mahul, O., Shah, S. A., & Asia, S. (2015). Fiscal disaster risk assessment options for consideration: Pakistan. Disclosure

  • Forni, L. G., Medellín-Azuara, J., Tansey, M., Young, C., Purkey, D., & Howitt, R. (2016). Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis. Water Resources and Economics, 16, 15–27.

    Google Scholar 

  • Füssel, H. M., & Klein, R. J. (2006). Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change, 75(3), 301–329.

    Google Scholar 

  • Gaillard, J. C., & Texier, P. (2010). Religions, natural hazards, and disasters: An introduction. Religion, 40(2), 81–84.

    Google Scholar 

  • Gallopín, G. C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 16(3), 293–303.

    Google Scholar 

  • Gorst, C., Kwok, C. S., Aslam, S., Buchan, I., Kontopantelis, E., Myint, P. K., & Mamas, M. A. (2015). Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes care, 38(12), 2354–2369.

    CAS  Google Scholar 

  • Government of Pakistan. (2017). 6th Population and Housing Census 2017, Economic Survey of Pakistan Pakistan Bureau of Statistics Ministry of finance Pakistan. www.finance.gov.pk/

  • Grace, K., Davenport, F., Hanson, H., Funk, C., & Shukla, S. (2015). Linking climate change and health outcomes: Examining the relationship between temperature, precipitation and birth weight in Africa. Global Environmental Change, 35, 125–137.

    Google Scholar 

  • Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—a case study in Mozambique. Global Environmental Change, 19(1), 74–88.

    Google Scholar 

  • Hallegatte, S., & Rozenberg, J. (2017). Climate change through a poverty lens. Nature Climate Change, 7(4), 250–256.

    Google Scholar 

  • He, J., Fu, C., Li, X., Ren, F., & Dong, J. (2023). What do we know about multidimensional poverty in China: Its dynamics, causes, and implications for sustainability. ISPRS International Journal of Geo-Information, 12(2), 78.

    Google Scholar 

  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., & Kanae, S. (2013). Global flood risk under climate change. Nature climate change, 3(9), 816–821.

    Google Scholar 

  • Hoang, H. D., Momtaz, S., & Schreider, M. (2020). Assessing the vulnerability of small-scale fishery communities in the estuarine areas of Central Vietnam in the context of increasing climate risks. Ocean & Coastal Management, 196, 105302.

    Google Scholar 

  • Huang, X., Huang, X., He, Y., & Yang, X. (2017). Assessment of livelihood vulnerability of land-lost farmers in urban fringes: A case study of **’an, China. Habitat International, 59, 1–9.

    Google Scholar 

  • Hufschmidt, G. (2011). A comparative analysis of several vulnerability concepts. Natural Hazards, 58, 621–643.

    Google Scholar 

  • Huong, N. T. L., Yao, S., & Fahad, S. (2019). Assessing household livelihood vulnerability to climate change: The case of Northwest Vietnam. Human and Ecological Risk Assessment: An International Journal, 25(5), 1157–1175.

    Google Scholar 

  • IPCC. (2022). Climate Change 2022 Impacts, Adaptation and Vulnerability, Summary for policy makers, technical summary and frequently asked questions, Intergovernmental Panel on Climate Change.

  • Islam, M. R., & Hasan, M. (2016). Climate-induced human displacement: A case study of cyclone Aila in the south-west coastal region of Bangladesh. Natural Hazards, 81, 1051–1071.

    Google Scholar 

  • Jamshed, A. (2015). Assessing vulnerability and capacity of flood affected communities in Punjab, Pakistan: Case study: District Jhang and Muzaffargarh (Master's thesis).

  • Jamshed, A., Birkmann, J., Feldmeyer, D., & Rana, I. A. (2020). A conceptual framework to understand the dynamics of rural–urban linkages for rural flood vulnerability. Sustainability, 12(7), 2894.

    Google Scholar 

  • Jamshed, A., Birkmann, J., McMillan, J. M., Rana, I. A., Feldmeyer, D., & Sauter, H. (2021). How do rural-urban linkages change after an extreme flood event? Empirical evidence from rural communities in Pakistan. Science of the Total Environment, 750, 141462.

    CAS  Google Scholar 

  • Jevrejeva, S., Jackson, L. P., Grinsted, A., Lincke, D., & Marzeion, B. (2018). Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environmental Research Letters, 13(7), 074014.

    Google Scholar 

  • Joseph, D. D. (2017). Social work models for climate adaptation: The case of small islands in the Caribbean. Regional Environmental Change, 17(4), 1117–1126.

    Google Scholar 

  • Kam, P. M., Aznar-Siguan, G., Schewe, J., Milano, L., Ginnetti, J., Willner, S., & Bresch, D. N. (2021). Global warming and population change both heighten future risk of human displacement due to river floods. Environmental Research Letters, 16(4), 044026.

    Google Scholar 

  • Karimi, V., Karami, E., & Keshavarz, M. (2018). Vulnerability and adaptation of livestock producers to climate variability and change. Rangeland Ecology & Management, 71(2), 175–184.

    Google Scholar 

  • Kellens, W., Terpstra, T., & De Maeyer, P. (2013). Perception and communication of flood risks: A systematic review of empirical research. Risk Analysis: An International Journal, 33(1), 24–49.

    Google Scholar 

  • Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: A review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073–1118.

    Google Scholar 

  • Khan, I., Lei, H., Shah, A. A., Khan, I., & Muhammad, I. (2021). Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environmental Science and Pollution Research, 28, 29720–29731.

    Google Scholar 

  • Kimaro, E. G., Mor, S. M., & Toribio, J. A. L. (2018). Climate change perception and impacts on cattle production in pastoral communities of northern Tanzania. Pastoralism, 8(1), 1–16.

    Google Scholar 

  • Kirsch, T. D., Wadhwani, C., Sauer, L., Doocy, S., & Catlett, C. (2012). Impact of the 2010 Pakistan floods on rural and urban populations at six months. PLoS currents, 4, e4fdfb212d2432.

    Google Scholar 

  • Kret, E., Czop, M., & Pietrucin, D. (2017). Requirements for numerical hydrogeological model implementation for predicting the environmental impact of the mine closure based on the example of the Zn. In 13th International Mine Water Association Congress–Mine Water & Circular Economy. Lappeenranta University of Technology, Lappeenranta (pp. 703–710).

  • Lafitte, F. (1970). Income deprivation.

  • Lechowska, E. (2018). What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Natural Hazards, 94(3), 1341–1366.

    Google Scholar 

  • Little, P. D., & McPeak, J. G. (2014). Pastoralism and resilience south of the Sahara. Washington: Intl Food Policy Res Inst.

    Google Scholar 

  • Mahmood, R., Jia, S., & Babel, M. S. (2016). Potential impacts of climate change on water resources in the Kunhar River Basin. Pakistan. Water, 8(1), 23.

    Google Scholar 

  • Mahonge, C., Mwilawa, A., Ngendello, M., & Mtambuki, A. (2014). Policies issues for enhancing pastoralists’ resilience to climate variability versus reality in Longido district Tanzania. Livestock Research for Rural Development, 26(12), 47–61.

    Google Scholar 

  • Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103–117.

    Google Scholar 

  • McCarthy, J. J. (2001). Climate change 2001: Impacts, adaptation, and vulnerability: contribution of working group ii to the third assessment report of the Intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mehta, A. K., & Shah, A. (2003). Chronic poverty in India: Incidence, causes and policies. World Development, 31(3), 491–511.

    Google Scholar 

  • Mekuyie, M., Jordaan, A., & Melka, Y. (2018). Understanding resilience of pastoralists to climate change and variability in the Southern Afar Region, Ethiopia. Climate Risk Management, 20, 64–77.

    Google Scholar 

  • Mengal, M. U. R., & Mahar, W. A. (2018). Disaster mitigation strategies for adobe houses: A case study of District Awaran, Balochistan, Pakistan. In 1st International Conference on Advances in Engineering & Technology (ICAET 2018). BUITEMS, Quetta, Pakistan.

  • Mohanty, S. K., Agrawal, N. K., Mahapatra, B., Choudhury, D., Tuladhar, S., & Holmgren, E. V. (2017). Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India. International Journal for Equity in Health, 16(1), 1–13.

    Google Scholar 

  • Morrissey, S. A., & Reser, J. P. (2007). Natural disasters, climate change and mental health considerations for rural Australia. Australian Journal of Rural Health, 15(2), 120–125.

    Google Scholar 

  • Munich, R. E. (2022). Natural Disaster Risks: Losses Are Trending Upwards| Munich Re.

  • Munyai, R. B., Nethengwe, N. S., & Musyoki, A. (2019). An assessment of flood vulnerability and adaptation: A case study of Hamutsha-Muungamunwe village, Makhado municipality. Jàmbá: Journal of Disaster Risk Studies, 11(2), 1–8.

    Google Scholar 

  • Muricho, D. N., Otieno, D. J., Oluoch-Kosura, W., & Jirström, M. (2019). Building pastoralists’ resilience to shocks for sustainable disaster risk mitigation: Lessons from west Pokot County, Kenya. International Journal of Disaster Risk Reduction, 34, 429–435.

    Google Scholar 

  • Mustafa, K., Nosheen, M., & Khan, A. U. (2021). Dynamic reflections of multidimensional health poverty in Pakistan. PLoS ONE, 16(11), e0258947.

    CAS  Google Scholar 

  • Nawab, T., Raza, S., Shabbir, M. S., Yahya Khan, G., & Bashir, S. (2023). Multidimensional poverty index across districts in Punjab, Pakistan: Estimation and rationale to consolidate with SDGs. Environment, Development and Sustainability, 25(2), 1301–1325.

    Google Scholar 

  • NDMA. (2012). Annual Report 2010, National Disaster Management Authority, Government of Pakistan.

  • NDMA. (2017). Annual Report 2017, National Disaster Management Authority, Government of Pakistan.

  • NDMA. (2022) National Disaster Management Authority report 2022, Government of Pakistan. https://reliefweb.int/sites/reliefweb.int/files/resources/NDMA%20Annual%20Report%202221.pdf

  • Nguyen, V. N., Ginige, K., & Greenwood, D. (2018). Challenges in integrating disaster risk reduction into the built environment–The Vietnam context. Procedia Engineering, 212, 316–323.

    Google Scholar 

  • Niazi, M. I., & Khan, A. (2012). The impact of education on multidimensional poverty across the regions in Punjab. Journal of Elementary Education, 21(1), 77–89.

    Google Scholar 

  • Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342.

    Google Scholar 

  • Oo, A. T., Van Huylenbroeck, G., & Speelman, S. (2018). Assessment of climate change vulnerability of farm households in Pyapon district, a delta region in Myanmar. International Journal of Disaster Risk Reduction, 28, 10–21.

    Google Scholar 

  • Opiyo, F. E., Wasonga, O. V., & Nyangito, M. M. (2014). Measuring household vulnerability to climate-induced stresses in pastoral rangelands of Kenya: Implications for resilience programming. Pastoralism, 4(1), 1–15.

    Google Scholar 

  • Paudel, S., Kumar, P., Dasgupta, R., Johnson, B. A., Avtar, R., Shaw, R., & Kanbara, S. (2021). Nexus between water security framework and public health: A comprehensive scientific review. Water, 13(10), 1365.

    Google Scholar 

  • PBS. (2019). Economic Survey of Pakistan (2018–19), Pakistan Bureau of Statistics, Ministry of Finance, Finance division Islamabad, Government of Pakistan.

  • PBS. (2022). Economic Survey of Pakistan (2021–22), Pakistan Bureau of Statistics, Ministry of Finance, Finance division Islamabad, Government of Pakistan.

  • PDMA. (2014). Provincial Disaster Management Authority Punjab ,Punjab Disaster Response Plan 2014, Government of Punjab, Pakistan. https://www.pdma.gop.pk/node/506

  • PDMA Punjab. (2021). Annual Report 2021, Provincial Disaster Management Authority Lahore Punjab, Government of Pakistan.

  • PDMA Punjab. (2022). Annual Report 2022, Provincial Disaster Management Authority Lahore Punjab, Government of Pakistan.

  • Pielke, R. (2019). Tracking progress on the economic costs of disasters under the indicators of the sustainable development goals. Environmental Hazards, 18(1), 1–6.

    Google Scholar 

  • PMD. (2021). Annual Weather Report 2021, Pakistan Metrological Department, Government of Pakistan.

  • Qasim, S., Qasim, M., Shrestha, R. P., & Khan, A. N. (2017). An assessment of flood vulnerability in Khyber Pukhtunkhwa province of Pakistan. AIMS Environmental Science, 4(2), 206–216.

    Google Scholar 

  • Qasim, S., Qasim, M., Shrestha, R. P., Khan, A. N., Tun, K., & Ashraf, M. (2016). Community resilience to flood hazards in Khyber Pukhthunkhwa province of Pakistan. International Journal of Disaster Risk Reduction, 18, 100–106.

    Google Scholar 

  • Qurat-ul-Ann, A. R., & Mirza, F. M. (2021). Determinants of multidimensional energy poverty in Pakistan: A household level analysis. Environment, Development and Sustainability, 23, 12366–12410.

    Google Scholar 

  • Rana, I. A., Asim, M., Aslam, A. B., & Jamshed, A. (2021). Disaster management cycle and its application for flood risk reduction in urban areas of Pakistan. Urban Climate, 38, 100893.

    Google Scholar 

  • Rana, I. A., Khaled, S., Jamshed, A., & Nawaz, A. (2022). Social protection in disaster risk reduction and climate change adaptation: A bibliometric and thematic review. Journal of Integrative Environmental Sciences, 19(1), 65–83.

    Google Scholar 

  • Rana, I. A., & Routray, J. K. (2016). Actual vis-à-vis perceived risk of flood prone urban communities in Pakistan. International Journal of Disaster Risk Reduction, 19, 366–378.

    Google Scholar 

  • Rasul, G., Neupane, N., Hussain, A., & Pasakhala, B. (2021). Beyond hydropower: Toward an integrated solution for water, energy and food security in south Asia. International Journal of Water Resources Development, 37(3), 466–490.

    Google Scholar 

  • Saddique, R., Zeng, W., Zhao, P., & Awan, A. (2023). Understanding multidimensional poverty in pakistan: implications for regional and demographic-specific policies. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-28026-6

    Article  Google Scholar 

  • Sam, A. G., Abidoye, B. O., & Mashaba, S. (2021). Climate change and household welfare in sub-Saharan Africa: Empirical evidence from Swaziland. Food Security, 13, 439–455.

    Google Scholar 

  • Sam, A. S., Kumar, R., Kächele, H., & Müller, K. (2017). Vulnerabilities to flood hazards among rural households in India. Natural Hazards, 88, 1133–1153.

    Google Scholar 

  • Santos, M. E., & Alkire, S. (2011). Training material for producing national human development reports. MPI: Construction and analysis. Oxford: Oxford poverty and human development initiative security implications of climate change in Mali. Climate Change, 68(205), 355–378.

    Google Scholar 

  • Schilling, J., Hertig, E., Tramblay, Y., & Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Regional Environmental Change, 20(1), 1–12.

    Google Scholar 

  • Shah, A. A., Ye, J., Abid, M., Khan, J., & Amir, S. M. (2018). Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Natural Hazards, 93, 147–165.

    Google Scholar 

  • Shah, A. A., Ye, J., Abid, M., & Ullah, R. (2017). Determinants of flood risk mitigation strategies at household level: A case of Khyber Pakhtunkhwa (KP) province, Pakistan. Natural Hazards, 88, 415–430.

    Google Scholar 

  • Sial, M. H., Noreen, A., & Awan, R. U. (2015). Measuring multidimensional poverty and inequality in Pakistan. The Pakistan Development Review, 54, 685–696.

    Google Scholar 

  • Sinha, M., Sendhil, R., Chandel, B. S., Malhotra, R., Singh, A., Jha, S. K., & Sankhala, G. (2022). Are multidimensional poor more vulnerable to climate change? Evidence from rural Bihar, India. Social Indicators Research, 162, 1–27.

    Google Scholar 

  • Solín, Ľ, Madajová, M., & Skubinčan, P. (2018). Mitigating flood consequences: Analysis of private flood insurance in Slovakia. Journal of Flood Risk Management, 11, S173–S185.

    Google Scholar 

  • Sternberg, T., & Chatty, D. (2016). Marginality, climate and resources in pastoral rangelands: Oman and Mongolia. Rangelands, 38(3), 145–151.

    Google Scholar 

  • Tan, N. Q., Dinh, N. C., Linh, N. H. K., Hung, P. X., Kien, N. D., Phuong, T. T., & Tinh, B. D. (2023). Climate change vulnerability and poverty nexus: Evidence from coastal communities in central Vietnam. Journal of Agriculture and Environment for International Development (JAEID), 117(1), 61–84.

    Google Scholar 

  • Teo, E. J., Vial, M. N., Hailu, S., Kelava, S., Zalucki, M. P., Furlong, M. J., & Barker, S. C. (2021). Climatic requirements of the eastern paralysis tick, Ixodes holocyclus, with a consideration of its possible geographic range up to 2090. International Journal for Parasitology., 51(4), 241–249.

    Google Scholar 

  • Teo, H. C., Raghavan, S. V., He, X., Zeng, Z., Cheng, Y., Luo, X., & Koh, L. P. (2022). Large-scale reforestation can increase water yield and reduce drought risk for water-insecure regions in the Asia–Pacific. Global Change Biology, 28(21), 6385–6403.

    CAS  Google Scholar 

  • Tewari, H. R., & Bhowmick, P. K. (2014). Livelihood vulnerability index analysis: An approach to study vulnerability in the context of Bihar. Jàmbá: Journal of Disaster Risk Studies, 6, a127.

    Google Scholar 

  • Thornton, P. K., Herrero, M. T., Freeman, H. A., Okeyo Mwai, A., Rege, J. E. O., Jones, P. G., & McDermott, J. J. (2007). Vulnerability, climate change and livestock-opportunities and challenges for the poor. Journal of Semi-Arid Tropical Agricultural Research., 4(1), 1–23.

    Google Scholar 

  • Toufique, K. A., & Islam, A. (2014). Assessing risks from climate variability and change for disaster-prone zones in Bangladesh. International Journal of Disaster Risk Reduction, 10, 236–249.

    Google Scholar 

  • Tsakiris, G. J. N. H. (2014). Flood risk assessment: Concepts, modeling, applications. Natural Hazards and Earth System Sciences, 14(5), 1361–1369.

    Google Scholar 

  • Tucker, J., Daoud, M., Oates, N., Few, R., Conway, D., Mtisi, S., & Matheson, S. (2015). Social vulnerability in three high-poverty climate change hot spots: What does the climate change literature tell us? Regional Environmental Change, 15, 783–800.

    Google Scholar 

  • Tullos, D., Byron, E., Galloway, G., Obeysekera, J., Prakash, O., & Sun, Y. H. (2016). Review of challenges of and practices for sustainable management of mountain flood hazards. Natural Hazards, 83, 1763–1797.

    Google Scholar 

  • UNDP. (2022) Hel** countries Reach their Climate Goals, United Nation Development Program.

  • UNDP. (2023) Pakistan Floods 2022 :Post Disaster Need Assessment Report, United Nations Development Program. https://www.undp.org/pakistan/publications/pakistan-floods-2022-post-disaster-needs-assessment-pdna

  • UNICEF. (2023) Devastating Floods in Pakistan, 2022. Available from: https://www.unicef.org/emergencies/devastating-floods-pakistan-2022. (Accessed July 1, 2023).

  • United Nations Office for Disaster Risk Reduction. (2022). Global assessment report on disaster risk reduction 2022: Our world at risk: Transforming governance for a resilient future. UN.

  • Varol, T., Cetin, M., Ozel, H. B., Sevik, H., & Zeren Cetin, I. (2022). The effects of climate change scenarios on Carpinus betulus and Carpinus orientalis in Europe. Water, Air, & Soil Pollution, 233(2), 45.

    CAS  Google Scholar 

  • Verlynde, N., Voltaire, L., & Chagnon, P. (2019). Exploring the link between flood risk perception and public support for funding on flood mitigation policies. Journal of Environmental Planning and Management, 62(13), 2330–2351.

    Google Scholar 

  • Verma, D., & Kataktalware, M. A. (2016). The livelihood vulnerability analysis: A pragmatic approach to assessing risks from climate variability and change—a case study of livestock farming in Karnataka, India.

  • Wang, C., & Wang, F. (2017). China can lead on climate change. Science, 357(6353), 764–764.

    CAS  Google Scholar 

  • Week, D. A., & Wizor, C. H. (2020). Effects of flood on food security, livelihood and socio-economic characteristics in the flood-prone areas of the core Niger delta, Nigeria. Asian Journal of Geographical Research, 3(1), 1–17.

    Google Scholar 

  • Wei, B., Su, G., Qi, W., & Sun, L. (2016). The livelihood vulnerability of rural households in earthquake-stricken areas—A case study of Ning’er. Yunnan Province. Sustainability, 8(6), 566.

    Google Scholar 

  • World Bank. (2021). GDP PPP current international $. https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD

  • Yamane, T. (1967). Statistics: an introductory analysis. New York: Harper and row.

    Google Scholar 

  • Yang, D., Luan, W., Yang, J., Xue, B., Zhang, X., Wang, H., & Pian, F. (2022). The contribution of data-driven poverty alleviation funds in achieving mid-21st-Century multidimensional poverty alleviation planning. Humanities and Social Sciences Communications, 9(1), 179.

    Google Scholar 

  • Yohe, G., & Tol, R. S. (2002). Indicators for social and economic co** capacity—moving toward a working definition of adaptive capacity. Global Environmental Change, 12(1), 25–40.

    Google Scholar 

Download references

Funding

This study has no funding from any institution or any donor agency.

Author information

Authors and Affiliations

Authors

Contributions

DA and SK analyzed data, methodology, results and discussion, conclusion and suggestions and manuscript write up whereas both DA and MA finalized and proof read the manuscript and DA, SK and MA all authors read and approved the final manuscript.

Corresponding author

Correspondence to Dilshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval taken from the COMSATS University Vehari campus, ethical approval committee.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, D., Khurshid, S. & Afzal, M. Climate change vulnerability and multidimensional poverty in flood prone rural areas of Punjab, Pakistan: an application of multidimensional poverty index and livelihood vulnerability index. Environ Dev Sustain 26, 13325–13352 (2024). https://doi.org/10.1007/s10668-023-04207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-04207-8

Keywords

Navigation