Log in

Water yield of the Volta Basin under future land use and climate change

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

With rapid land use land cover (LULC) and climate change, it is important to study the performance of basins in terms of water yield under future LULC and climate change. Studies of the Volta Basin on water yield have been conducted at the sub-basin level, but a global-scale study has not been fully explored. The study used the InVEST tool to analyze the Volta Basin's water yield based on past and future LULC and shared socioeconomic pathway scenarios. The CA–Markov model simulated land use changes for 2030 and 2040. From 1985 to 2020, built-up areas, croplands, and open forests increased, while grasslands, shrublands, and closed forests decreased. The predicted LULC indicates increased croplands, built-up areas, open forests, and bare areas from 1985 to 2040. Grassland, closed forest, and shrubland areas decreased. Precipitation was highest under SSP2-4.5 and lowest under SSP5-8.5, while temperature and PET peaked under SSP3-7.0 and dipped under SSP2-4.5. Annual water yield increased from 1985 to 2020, with the highest in 2020 and lowest in 1995. Water land use contributed most to mean water yield, while grassland contributed the least under all SSPs. SSP1-2.6 and SSP5-8.5 recorded the highest and lowest yields respectively. The southern sub-basins had the highest values. Precipitation positively correlated (0.56) with water yield, while temperature (0.42) and PET (0.46) negatively correlated. Spatial water yield results can highlight vulnerable areas, guide management, and shape adaptation measures. It also shows InVEST's effectiveness in modeling the Volta Basin's water yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data used in the study are publicly available.

References

  • Abungba, J. A., Adjei, K. A., Gyamfi, C., Odai, S. N., **ale, S. M., & Khare, D. (2022a). Implications of land use/land cover changes and climate change on black volta basin future water resources in Ghana. Sustainability, 14(19), 12383. https://doi.org/10.3390/su141912383

    Article  Google Scholar 

  • Abungba, J. A., Khare, D., **ale, S. M., Adjei, K. A., Gyamfi, C., & Odai, S. N. (2020). Assessment of Hydro-climatic Trends and Variability over the Black Volta Basin in Ghana. Earth Systems and Environment, 4(4), 739–755. https://doi.org/10.1007/s41748-020-00171-9

    Article  Google Scholar 

  • Agyekum, J., Annor, T., Quansah, E., Lamptey, B., & Okafor, G. (2022). Extreme precipitation indices over the Volta Basin: CMIP6 model evaluation. Scientific African, 16, e01181. https://doi.org/10.1016/j.sciaf.2022.e01181

    Article  Google Scholar 

  • Akpoti, K., Antwi, E. O., & Kabo-bah, A. T. (2016). Impacts of rainfall variability land use and land cover change on stream flow of the black volta Basin West Africa. Hydrology, 3(3), 26. https://doi.org/10.3390/hydrology3030026

    Article  Google Scholar 

  • Ampim, P. A. Y., Ogbe, M., Obeng, E., Akley, E. K., & MacCarthy, D. S. (2021). Land Cover Changes in Ghana over the Past 24 Years. Sustainability, 13(9), 4951.

    Article  Google Scholar 

  • Andah, W. E. I., van de Giesen, N., & Biney, C. A. (2003). Water, climate, food, and environment in the Volta Basin. Contribution to the project ADAPT. Adaptation strategies to changing environments.

  • Aneseyee, A. B., Soromessa, T., Elias, E., Noszczyk, T., & Feyisa, G. L. (2022). Evaluation of water provision ecosystem services associated with land use/cover and climate variability in the winike watershed, Omo Gibe Basin of Ethiopia. Environmental Management, 69(2), 367–383. https://doi.org/10.1007/s00267-021-01573-9

    Article  Google Scholar 

  • Annor, T., Lamptey, B., Wagner, S., Oguntunde, P., Arnault, J., Heinzeller, D., & Kunstmann, H. (2018). High-resolution long-term WRF climate simulations over Volta Basin Part 1: Validation analysis for temperature and precipitation. Theoretical and Applied Climatology, 133(3–4), 829–849. https://doi.org/10.1007/s00704-017-2223-5

    Article  Google Scholar 

  • Atulley, J. A., Kwaku, A. A., Gyamfi, C., Owusu-Ansah, E. D. J., Adonadaga, M. A., & Nii, O. S. (2022). Reservoir sedimentation and spatiotemporal land use changes in their watersheds the case of two sub-catchments of the White Volta Basin. Environmental Monitoring and Assessment, 194(11), 809. https://doi.org/10.1007/s10661-022-10431-y

    Article  Google Scholar 

  • Atullley, J. A., Kwaku, A. A., Owusu-Ansah, E. D. J., Ampofo, S., Jacob, A., & Nii, O. S. (2022). Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040. Sustainable Water Resources Management, 8(5), 148. https://doi.org/10.1007/s40899-022-00727-9

    Article  Google Scholar 

  • Awotwi, A., Yeboah, F., & Kumi, M. (2015). Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water and Environment Journal, 29(2), 259–267. https://doi.org/10.1111/wej.12100

    Article  Google Scholar 

  • Behera, M. D., Borate, S. N., Panda, S. N., Behera, P. R., & Roy, P. S. (2012). Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model – A geo-information based approach. Journal of Earth System Science, 121(4), 1011–1024. https://doi.org/10.1007/s12040-012-0207-5

    Article  Google Scholar 

  • Biney, C. (2010). Connectivities and linkages within the Volta Basin. The Global Dimensions of Change in River Basins, 91.

  • Braimoh, A. K., & Vlek, P. L. G. (2004). Land-Cover Change Analyses in the Volta Basin of Ghana. Earth Interactions, 8, 21.

    Article  Google Scholar 

  • Cong, W., Sun, X., Guo, H., & Shan, R. (2020). Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators, 112, 106089. https://doi.org/10.1016/j.ecolind.2020.106089

    Article  Google Scholar 

  • Darko, D., Adjei, K. A., Appiah-Adjei, E. K., Odai, S. N., Obuobie, E., & Asmah, R. (2019). Simulation of climate characteristics and extremes of the Volta Basin using CCLM and RCA regional climate models. Theoretical and Applied Climatology, 135(1–2), 741–763. https://doi.org/10.1007/s00704-018-2485-6

    Article  Google Scholar 

  • Ding, H., & Sun, R. (2023). Supply-demand analysis of ecosystem services based on socioeconomic and climate scenarios in North China. Ecological Indicators, 146, 109906. https://doi.org/10.1016/j.ecolind.2023.109906

    Article  Google Scholar 

  • Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2012). Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. Journal of Hydrology, 436, 35–50. https://doi.org/10.1016/j.jhydrol.2012.02.033

    Article  Google Scholar 

  • Fan, M., Shibata, H., & Chen, L. (2018). Spatial conservation of water yield and sediment retention hydrological ecosystem services across Teshio watershed, northernmost of Japan. Ecological Complexity, 33, 1–10. https://doi.org/10.1016/j.ecocom.2017.10.008

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fu, F., Deng, S., Wu, D., Liu, W., & Bai, Z. (2022). Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustainable Cities and Society, 80, 103760. https://doi.org/10.1016/j.scs.2022.103760

    Article  Google Scholar 

  • Guo, X., Zhang, Y., Guo, D., Lu, W., & Xu, H. (2023). How does ecological protection redline policy affect regional land use and ecosystem services? Environmental Impact Assessment Review, 100, 107062. https://doi.org/10.1016/j.eiar.2023.107062

    Article  Google Scholar 

  • Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748

    Article  CAS  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hu, Y., Gao, M., & Batunacun. (2020). Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under different land use and climate change scenarios. Environmental Development, 34, 100488. https://doi.org/10.1016/j.envdev.2019.100488

    Article  Google Scholar 

  • Ibrahim, B., Wisser, D., Barry, B., Fowe, T., & Aduna, A. (2015). Hydrological predictions for small ungauged watersheds in the Sudanian zone of the Volta basin in West Africa. Journal of Hydrology-Regional Studies, 4, 386–397. https://doi.org/10.1016/j.ejrh.2015.07.007

    Article  Google Scholar 

  • Jung, G., Wagner, S., & Kunstmann, H. (2012). Joint climate-hydrology modeling: An impact study for the data-sparse environment of the Volta Basin in West Africa. Hydrology Research, 43(3), 231–248. https://doi.org/10.2166/nh.2012.044

    Article  Google Scholar 

  • Kasei, R., Diekkrüger, B., & Leemhuis, C. (2010). Drought frequency in the Volta Basin of West Africa. Sustainability Science, 5(1), 89–97. https://doi.org/10.1007/s11625-009-0101-5

    Article  Google Scholar 

  • Kc, S., & Lutz, W. (2017). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 42, 181–192. https://doi.org/10.1016/j.gloenvcha.2014.06.004

  • Kranjac-Berisavljevic, G., Abdul-Ganiyu, S., Gandaa, B., & Abagale, F. (2014). Dry Spells occurrence in tamale, northern Ghana – Review of Available Information. Journal of Disaster Research, 9, 468–474. https://doi.org/10.20965/jdr.2014.p0468

    Article  Google Scholar 

  • Larbi, I., Hountondji, F. C. C., Dotse, S.-Q., Mama, D., Nyamekye, C., Adeyeri, O. E., Djan’na Koubodana, H., Odoom, P. R. E., & Asare, Y. M. (2021). Local climate change projections and impact on the surface hydrology in the Vea catchment. West Africa. Hydrology Research, 52(6), 1200–1215. https://doi.org/10.2166/nh.2021.096

    Article  Google Scholar 

  • Larbi, I., Obuobie, E., Verhoef, A., Julich, S., Feger, K.-H., Bossa, A. Y., & Macdonald, D. (2020). Water balance components estimation under scenarios of land cover change in the Vea catchment. West Africa. Hydrological Sciences Journal, 65(13), 2196–2209. https://doi.org/10.1080/02626667.2020.1802467

    Article  Google Scholar 

  • Leemhuis, C., Jung, G., Kasei, R., & Liebe, J. (2009). The Volta Basin water allocation system: Assessing the impact of small-scale reservoir development on the water resources of the Volta Basin, West Africa. Advances in Geosciences, 21, 57–62. https://doi.org/10.5194/adgeo-21-57-2009

    Article  Google Scholar 

  • Leh, M. D. K., Matlock, M. D., Cummings, E. C., & Nalley, L. L. (2013). Quantifying and map** multiple ecosystem services change in West Africa. Agriculture, Ecosystems & Environment, 165, 6–18. https://doi.org/10.1016/j.agee.2012.12.001

    Article  Google Scholar 

  • Li, S., Yang, H., Lacayo, M., Liu, J., & Lei, G. (2018). Impacts of Land-Use and Land-Cover Changes on Water Yield: A Case Study in **g-**-Ji China. Sustainability, 10(4), 960.

    Article  Google Scholar 

  • Lian, X.-H., Qi, Y., Wang, H.-W., Zhang, J.-L., & Yang, R. (2020). Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water, 12(1), 11.

    Article  Google Scholar 

  • Logah, F. Y., Obuobie, E., Adjei, K. A., Gyamfi, C., & Odai, S. N. (2023). Capability of satellite rainfall products in simulating streamflows in the Black Volta Basin. Sustainable Water Resources Management, 9(3), 96. https://doi.org/10.1007/s40899-023-00871-w

    Article  Google Scholar 

  • Measho, S., Chen, B., Pellikka, P., Trisurat, Y., Guo, L., Sun, S., & Zhang, H. (2020). Land Use/land cover changes and associated impacts on water yield availability and variations in the mereb-gash River Basin in the Horn of Africa. Journal of Geophysical Research: Biogeosciences, 125(7), e2020JG005632. https://doi.org/10.1029/2020JG005632

    Article  Google Scholar 

  • Mondal, M. S., Sharma, N., Garg, P. K., & Kappas, M. (2016). Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 259–272. https://doi.org/10.1016/j.ejrs.2016.08.001

    Article  Google Scholar 

  • Neiland, A., & Béné, C. (2023). Review of river fisheries valuation in West and Central Africa.

  • Neumann, R., Jung, G., Laux, P., & Kunstmann, H. (2007). Climate trends of temperature, precipitation and river discharge in the Volta Basin of West Africa. International Journal of River Basin Management, 5(1), 17–30. https://doi.org/10.1080/15715124.2007.9635302

    Article  Google Scholar 

  • O’Neill, B. C., Carter, T. R., Ebi, K., Harrison, P. A., Kemp-Benedict, E., Kok, K., Kriegler, E., Preston, B. L., Riahi, K., Sillmann, J., van Ruijven, B. J., van Vuuren, D., Carlisle, D., Conde, C., Fuglestvedt, J., Green, C., Hasegawa, T., Leininger, J., Monteith, S., & Pichs-Madruga, R. (2020). Achievements and needs for the climate change scenario framework. Nature Climate Change, 10(12), 1074–1084. https://doi.org/10.1038/s41558-020-00952-0

    Article  Google Scholar 

  • O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004

    Article  Google Scholar 

  • Obahoundje, S., Diedhiou, A., Ofosu, E. A., Anquetin, S., François, B., Adounkpe, J., Amoussou, E., Kouame, Y. M., Kouassi, K. L., Nguessan Bi, V. H., & Youan Ta, M. (2018). Assessment of Spatio-temporal changes of land use and land cover over South-Western African Basins and their relations with variations of discharges. Hydrology, 5(4), 56.

    Article  Google Scholar 

  • Owusu, K., Waylen, P., & Qiu, Y. (2008). Changing rainfall inputs in the Volta basin: Implications for water sharing in Ghana. GeoJournal, 71(4), 201–210. https://doi.org/10.1007/s10708-008-9156-6

    Article  Google Scholar 

  • Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin, H., Waldhoff, S., Weindl, I., Wise, M., . . . Vuuren, D. P. v. (2017). Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

  • Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., & Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  • Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., & Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534(7609), 631–639. https://doi.org/10.1038/nature18307

    Article  CAS  Google Scholar 

  • Sander, K., Haider, S. W., & Hyseni, B. (2011). Wood-based biomass energy development for sub-Saharan Africa: issues and approaches.

  • Schwanghart, W., & Schütt, B. (2008). Meteorological causes of Harmattan dust in West Africa. Geomorphology, 95(3), 412–428. https://doi.org/10.1016/j.geomorph.2007.07.002

    Article  Google Scholar 

  • Sharp, R., Tallis, H., Ricketts, T., Guerry, A., Wood, S., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., & Olwero, N. (2019). InVEST 3.6. 0 user’s guide. Collaborative publication by The Natural Capital Project. In: Stanford University, the University of Minnesota, The Nature Conservancy ….

  • Shukla, S., & Gedam, S. (2018). Assessing the impacts of urbanization on hydrological processes in a semi-arid river basin of Maharashtra India. Modeling Earth Systems and Environment, 4(2), 699–728. https://doi.org/10.1007/s40808-018-0446-9

    Article  Google Scholar 

  • Shukla, S., & Gedam, S. (2019). Evaluating hydrological responses to urbanization in a tropical river Basin: A Water resources management perspective. Natural Resources Research, 28(2), 327–347. https://doi.org/10.1007/s11053-018-9390-7

    Article  Google Scholar 

  • Siabi, E. K., Phuong, D. N. D., Kabobah, A. T., Akpoti, K., Anornu, G., Incoom, A. B. M., Nyantakyi, E. K., Yeboah, K. A., Siabi, S. E., Vuu, C., Domfeh, M. K., Mortey, E. M., Wemegah, C. S., Kudjoe, F., Opoku, P. D., Asare, A., Mensah, S. K., Donkor, P., Opoku, E. K., & Quansah, A. (2023). Projections and impact assessment of the local climate change conditions of the Black Volta Basin of Ghana based on the Statistical DownScaling Model. Journal of Water and Climate Change, 14(2), 494–515. https://doi.org/10.2166/wcc.2023.352

    Article  Google Scholar 

  • Song, W., Deng, X., Yuan, Y., Wang, Z., & Li, Z. (2015). Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecological Modelling, 318, 245–253. https://doi.org/10.1016/j.ecolmodel.2015.01.029

    Article  Google Scholar 

  • Strohbach, M. W., Döring, A. O., Möck, M., Sedrez, M., Mumm, O., Schneider, A.-K., Weber, S., & Schröder, B. (2019). The “Hidden Urbanization”: trends of impervious surface in low-density housing developments and resulting impacts on the water balance [Original Research]. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2019.00029

    Article  Google Scholar 

  • Sulemana, A., Dong, X., Su, B., Liu, J., Li, Y., Peng, T., Ma, H., Wang, K., & Xu, S. (2017). Modelling the spatial variation of hydrology in volta river basin of west Africa under climate change. Nature Environment and Pollution Technology, 16, 1095–1105.

    Google Scholar 

  • Tahiru, A. A., Doke, D. A., & Baatuuwie, B. N. (2020). Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region Ghana. Applied Water Science, 10(8), 198. https://doi.org/10.1007/s13201-020-01272-6

    Article  CAS  Google Scholar 

  • UNEP. (2023). West African countries unite to reverse Volta Basin degradation UNEP GEF. Retrieved 5 July from https://www.unep.org/gef/news-and-stories/press-release/west-african-countries-unite-reverse-volta-basin-degradation

  • Van de Giesen, N., Liebe, J., & Jung, G. (2010). Adapting to climate change in the Volta Basin. West Africa. Current Science, 98(8), 1033–1037.

    Google Scholar 

  • von Storch, J.-S., Putrasahan, D., Lohmann, K., Gutjahr, O., Jungclaus, J., Bittner, M., Haak, H., Wieners, K.-H., Giorgetta, M., Reick, C., Esch, M., Gayler, V., de Vrese, P., Raddatz, T., Mauritsen, T., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., . . . Roeckner, E. (2017). MPI-M MPIESM1.2-HR model output prepared for CMIP6 HighResMIP Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.762

  • Wang, X., Chu, B., Feng, X., Li, Y., Fu, B., Liu, S., & **, J. (2021). Spatiotemporal variation and driving factors of water yield services on the Qingzang Plateau. Geography and Sustainability, 2(1), 31–39. https://doi.org/10.1016/j.geosus.2021.02.002

    Article  Google Scholar 

  • Wu, C., Qiu, D., Gao, P., Mu, X., & Zhao, G. (2022). Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin China. Journal of Arid Land, 14(4), 426–440. https://doi.org/10.1007/s40333-022-0013-0

    Article  Google Scholar 

  • Wu, S., Li, J., & Huang, G. H. (2008). A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution. Applied Geography, 28(3), 210–223. https://doi.org/10.1016/j.apgeog.2008.02.006

    Article  Google Scholar 

  • Xu, X., Yang, G., Tan, Y., Liu, J., & Hu, H. (2018). Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Science of the Total Environment, 634, 1601–1614. https://doi.org/10.1016/j.scitotenv.2018.04.046

    Article  CAS  Google Scholar 

  • Yang, X., Chen, R., Meadows, M. E., Ji, G., & Xu, J. (2020). Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply, 20(3), 1035–1045. https://doi.org/10.2166/ws.2020.026

    Article  Google Scholar 

  • Yangouliba, G. I., Zoungrana, B.J.-B., Hackman, K. O., Koch, H., Liersch, S., Sintondji, L. O., Dipama, J.-M., Kwawuvi, D., Ouedraogo, V., Yabré, S., Bonkoungou, B., Sougué, M., Gadiaga, A., & Koffi, B. (2023). Modelling past and future land use and land cover dynamics in the Nakambe River Basin, West Africa. Modeling Earth Systems and Environment, 9(2), 1651–1667. https://doi.org/10.1007/s40808-022-01569-2

    Article  Google Scholar 

  • Yin, G., Wang, X., Zhang, X., Fu, Y., Hao, F., & Hu, Q. (2020). InVEST Model-Based Estimation of Water Yield in North China and Its Sensitivities to Climate Variables. Water, 12(6), 1692.

    Article  Google Scholar 

  • Yu, Y., Sun, X., Wang, J., & Zhang, J. (2022). Using InVEST to evaluate water yield services in Shangri-La, Northwestern Yunnan. China. Peerj, 10, e12804. https://doi.org/10.7717/peerj.12804

    Article  Google Scholar 

  • Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., & Briggs, P. R. (2004). A rational function approach for estimating mean annual evapotranspiration. Water Resources Research. https://doi.org/10.1029/2003WR002710

    Article  Google Scholar 

  • Zhang, T., Gao, Q., **e, H., Wu, Q., Yu, Y., Zhou, C., Chen, Z., & Hu, H. (2022). Response of water yield to future climate change based on invest and cmip6—a case study of the Chaohu Lake Basin. Sustainability, 14(21), 14080.

    Article  CAS  Google Scholar 

  • Zhang, X., Liu, L., Chen, X., Gao, Y., **e, S., & Mi, J. (2021). GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 13(6), 2753–2776. https://doi.org/10.5194/essd-13-2753-2021

    Article  Google Scholar 

  • Zhang, Z., Hu, B., Jiang, W., & Qiu, H. (2021). Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecological Indicators, 127, 107764. https://doi.org/10.1016/j.ecolind.2021.107764

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mawuko Ocloo.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocloo, D.M. Water yield of the Volta Basin under future land use and climate change. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03977-5

Keywords

Navigation