Log in

Application of geoelectric technique and sensitivity analysis in assessment of aquifer vulnerability: a case study of Nsukka and Igbo-Etiti Area, Eastern Nigeria

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater quality assessment has become vital issues all over the world as remediation of contaminated water is extremely challenging. Due to the unconfined nature of Nsukka and Igbo-Etiti groundwater and the highly intensive agricultural practices observed in these areas, assessment of groundwater vulnerability to contamination is inevitable. This study employed vertical electrical sounding (VES) in forty-two (42) different locations of Nsukka and Igbo-Etiti area with the intent to assess groundwater susceptibility to contamination using GOD, GODL and GLSI models. Results from VES delineated a total of four-to-five geoelectric layers. From VES result on the layer’s geologic unit’s constrained with the borehole log information on geologic unit serving as water-bearing unit in the area, the fourth layer was delineated as the aquifer layer in most locations of the study area within fine-to-medium coarse-grained sand. Results of groundwater vulnerability assessment as established using GODindex classified the aquifer units in the study area as low vulnerable units. GODLindex and GLSI models establishing different range of vulnerability index classified the areas aquifer units into high, moderate and low vulnerable zones. Results of single parameter and map removal sensitivity analysis on GOD and GODL model delineated overlying lithology and longitudinal conductance, respectively, as the most sensitive parameters in vulnerability assessment of the study area. Aquifer vulnerability potential zone maps generated revealed the vulnerability class distributions. These results will assist in sensitizing the habitants against indiscriminate disposal of waste and also guide the government in effective monitoring and management of groundwater repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this manuscript.

References

  • Abdeslam, I., Fehdi, C., & Djabri, L. (2017). Application of drastic method for determining the vulnerability of an alluvial aquifer: Morsott-El Aouinet north east of Algeria. In International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES17 (pp. 21–24). Beirut Lebanon.

  • Abdullah, T. O., Li, S. S., & Al-Ansari, N. A. (2016). Groundwater assessment of Halabja Saidsadiq Basin, Kurdistan Region, NE of Iran using vulnerability map**. Arabian Journal of Geosciences, 9, 223. https://doi.org/10.1007/s12517-015-2264-y

    Article  Google Scholar 

  • Achu, A. L., Reghunath, R., & Thomas, J. (2019). Map** of groundwater recharge potential zones and identification of suitable site-specific recharge mechanisms in a tropical river basin. Journal of Earth System and Environment. https://doi.org/10.1007/s41748-019-00138-5

    Article  Google Scholar 

  • Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5(12), 853.

    Article  CAS  Google Scholar 

  • Agagu, O. K., Fayose, E. A., & Paters, S. W. (1985). Stratigraphy and sedimentation in the senonian Anambra basin of eastern Nigeria. Journal of Mining and Geology, 2, 25–35.

    Google Scholar 

  • Akinlalu, A. A., Mogaji, K. A., & Adebodun, T. S. (2021). Assessment of aquifer vulnerability using a developed “GODL” method (modified GOD model) in a schist belt environ, Southwestern Nigeria. Environmental Monitoring and Assessment, 193, 199. https://doi.org/10.1007/s10661-021-08960-z

    Article  CAS  Google Scholar 

  • Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency.

  • Balbika, Z. M., Bryant, L. D., Kieldsen, T. R., & Tukur, A. I. (2022). Groundwater vulnerability and sensitivity optimization using geographical information system for Kano metropolis, North-Western Nigeria. Journal of Geoscience and Environment Protection, 2022(10), 202–226.

    Article  Google Scholar 

  • Babiker, I. S., Mohamed, M. A. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Science of the Total Environment, 345, 127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005

    Article  CAS  Google Scholar 

  • Braga, A. C. O., Dourado, J. C., & Malagutti, F. W. (2016). Resistivity (DC) method applied to aquifer protection studies. Brazilian Journal of Geophysics, 24(4), 573–581.

    Google Scholar 

  • Chamine, H. I. (2015). Water resources meet sustainability: New trends in environmental hydrogeology and groundwater engineering.

  • Civita, M., & De Maio, M. (1997). SINTACS. Un Sistema Parametrico per la Valutazione e la Cartografia Della Vulnerabilita’ Degli Acquiferi All’inquinamento. Metodologia and Automatizzazione; Pitagora: Bologna, Italy.

  • Cotterman, K. A., Kendall, A. D., Basso, B., & Hyndman, D. W. (2018). Groundwater depletion and climate change: Future prospects of crop production in the central high plain aquifer. Climate Change, 146(1–2), 187–200.

    Article  Google Scholar 

  • Das, M. (2013). Impact of population growth on groundwater quality- A case study in urban india. Fresenius Environmental Bullentin, 22(10a), 3089–3095.

  • Ekanem, A. M., Ikpe, E. O., George, N. J., & Thomas, J. E. (2022). Integrating geoelectrical and geological techniques in GIS-based DRASTIC model of groundwater vulnerability potential in the raffia city of Ikot Ekpene and its environs, southern Nigeria International. Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-022-00202-3

    Article  Google Scholar 

  • El Fehri, R. M., Chrigui, R., Kouzana, L., & Dlala, M. (2021). A new model approach for vulnerability to assess seawater intrusion risk for monastir aquifer system Tunisia. International Journal of Earth Science and Geophysics, 7, 2. https://doi.org/10.35840/2631-5033/1847

    Article  Google Scholar 

  • Eugene-Okorie, J. O., Obiora, D. N., Ibuot, J. C., & Ugbor, D. O. (2020). Geoelectrical investigation of groundwater potential and vulnerability of Oraifite, Anambra State, Nigeria. Applied Water Science, 10(10), 1–14. https://doi.org/10.1007/s13201-020-01304-1

    Article  Google Scholar 

  • Evans, U. F., Abdusalam, N. N., & Mallam, A. (2017). Natural vulnerability estimates of groundwater resources in the coastal area of Ibaka Community, using Dar Zarrouk geoelectrical parameters. Journal of Geology and Geophysics. https://doi.org/10.4172/2381-8719.1000295

    Article  Google Scholar 

  • Eyankware, M. O., Selemo, A. O. I., Obasi, P. N., & Nweke, O. M. (2020). Evaluation of groundwater vulnerability in fractured aquifer using geoelectric layer susceptibility index at Oju, Southern Benue Trough Nigeria. Geological Behavior. https://doi.org/10.26480/gbr.02.2020.63.67

    Article  Google Scholar 

  • Ezema, O. K., Ibout, J. C., & Daniel, N. O. (2020). Geophysical investigation of aquifer repositories in Ibagwa Aka, Enugu State, Nigeria, using electrical resistivity method. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2020.100458

    Article  Google Scholar 

  • Foster, S. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden, W., & Van Waegeningh, H. G. (eds), Vulnerability of soil and groundwater to pollutants. Proc Inf TNO Comm Hydrol Res, The Hague (Vol. 38, pp. 69–86).

  • Foster, S. S. D., & Chilton, P. J. (2003). Groundwater: The processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society of London B, 358, 1957–1972.

    Article  CAS  Google Scholar 

  • Foster, S. S. D., Hirata, R. C. A., Gomes, D., D’elia, M., Paris, M. (2002). Quality protection groundwater: Guide for water service companies, municipal authorities and environment agencies. World Bank, Washington, DC. http://dx.doi.org/https://doi.org/10.1596/0-8213-4951-1

  • George, N. J. (2021). Integrating hydrogeological and second-order geo-electric indices in groundwater vulnerability map**: A case study of alluvial environments. Applied Water Science, 11, 123. https://doi.org/10.1007/s13201-021-01437-x

    Article  CAS  Google Scholar 

  • Ghazavi, R., & Ebrahimi, Z. (2015). Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. International Journal of Environmental Science and Technology, 2015(12), 2909–2918. https://doi.org/10.1007/s13762-015-0813-2

    Article  CAS  Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F., & Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197. https://doi.org/10.1038/nature11295

    Article  CAS  Google Scholar 

  • Henriet, J. P. (1975). Direct applications of the Dar Zarrouk parameters in ground water surveys. Geophysical Prospecting, 24, 344–353. https://doi.org/10.1111/j.1365-2478.1976.tb00931.x

    Article  Google Scholar 

  • Ibuot, J. C., Okeke, F. N., George, N. J., & Obiora, D. N. (2017). Geophysical and physicochemical characterization of organic waste contamination of hydrolithofacies in the coastal dumpsite of AkwaIbom State, Southern Nigeria. Water Science Technology Water Supply, 17(6), 1626–1637.

    Article  CAS  Google Scholar 

  • Iloeje, N. P. (1995). A new geography of Nigeria Revised Ed. Longman Nig. Ltd. (pp. 45–50). https://doi.org/10.4236/am.2018.912088

  • Jesiya, N. P., & Gopinath, G. (2019). A customized fuzzy AHP-GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters. Groundwater for Sustainable Development, 8, 654–666. https://doi.org/10.1016/j.gsd.2019.03.005

    Article  Google Scholar 

  • Khemiri, S., Khnissi, A., Alaya, B. A., Saidi, S., & Zargrouni, F. (2013). Using GIS for the comparison of intrinsic parameter methods assessment of groundwater vulnerability to pollution in scenarios of semi-arid climate. The case of foussana groundwater in the central of Tunisia. Journal of Water Resource and Protection, 05, 835–845.

    Article  CAS  Google Scholar 

  • Koesuma, S., Rosidah, U., & Ramelan, A. H. (2022). Groundwater vulnerability zones map** using DRASTIC and GOD methods in Krendowahono Village. Karanganyar Regency. Earth and Environmental Science, 989, 012002. https://doi.org/10.1088/1755-1315/989/1/012002

    Article  Google Scholar 

  • Kumar, A., & Pandey, A. C. (2015). Geoinformatics based groundwater potential assessment in hard rock terrain of Ranchi urban environment, Jharkhand state (India) using MCDM-AHP techniques. Groundwater for Sustainable Development, 2, 27–41. https://doi.org/10.1016/j.gsd.2016.05.001

    Article  Google Scholar 

  • Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorty, K. (2021). Sources and consequences of groundwater contamination. Achives of Environmental Contamination and Toxicology, 80, 1–10.

    Article  Google Scholar 

  • Lodwick, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical information systems: Suitability analysis. International Journal of Geographical Information Systems, 4(4), 413–428.

    Article  Google Scholar 

  • Mohammadi, K., Niknam, R., & Majd, V. J. (2009). Aquifer vulnerability assessment using GIS and fuzzy system: A case study in Tehran-Karaj aquifer, Iran. Environmental Geology, 2009(58), 437–446. https://doi.org/10.1007/s00254-008-1514-7

    Article  Google Scholar 

  • Mosbahi, M., Benabdallah, S., & Boussema, M. R. (2015). Sensitivity analysis of a GIS-based model: a case study of a large semi-arid catchment. Earth Science Informatics, 8, 569–581. https://doi.org/10.1007/s12145-014-0176-0

    Article  Google Scholar 

  • Napolitano, P. (1995). GIS for aquifer vulnerability assessment in the Piana Campana, southern Italy, using the DRASTIC and SINTACS methods. ITC, Enschede, The Netherlands.

  • Napolitano, P., & Fabbri, A. G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In Application of geographic information systems in hydrology and water resources management (proceedings of the Vienna Conference, April 1996), April 1996. IAHS Publ. (Vol. 235, pp. 559–566).

  • Narany, T. S., Ramli, M. F., Aris, A. Z., Sulaiman, W. N., & Fakharian, K. (2014). Spataial assessment of groundwater quality monitoring wells using indicator Kriging and risk map**, Amol-Babol plain, Iran. Water Science, 6, 68–65. https://doi.org/10.3390/w6010068

    Article  Google Scholar 

  • Nasri, S., Nejati, A., Kahoo, A. R., & Soleimani, M. (2020). New insights into the structural model of the Makran subduction zone by fusion of 3D inverted geophysical models. Journal of Asian Earth Sciences, 188, 104075. https://doi.org/10.1016/j.jseaes.2019.104075

    Article  Google Scholar 

  • National Population Commission Census (2006). Report on Nigeria national population commission. JSTOR 33:206–210. https://www.jstor.org/stable/25434601

  • National Research Council (1993). Ground water vulnerability assessment, contamination potential under conditions of uncertainty (p. 210). National Academy Press.

  • Nobre, R. C. M., Filho, O. C. R., Mansur, W. J., Nobre, M. M. M., & Cosenza, C. A. N. (2007). Groundwater vulnerability and risk map** using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, 94(3–4), 277–292.

    Article  CAS  Google Scholar 

  • Nowlan, L. (2005). Buried treasure: Groundwater permitting and pricing in Canada. Walter and Duncan Gordon Foundation, with case studies by Geological Survey of Canada, West Coast Environmental Law, and Sierra Legal Defence Fund.

  • Nugraha, G. U., Gaol, K. L., Hartanto, P., & Bakti, H. (2020). Aquifer vulnerability: Its protection and management—A case study in Pangkalpinang City, Indonesia. International Journal of Geophysics, 2020, 1–20. https://doi.org/10.1155/2020/8887914

    Article  Google Scholar 

  • Obiora, D. N., & Ibuot, J. C. (2020). Geophysical assessment of aquifer vulnerability and management: a case study of University of Nigeria, Nsukka Enugu State. Applied Water Science, 10, 29. https://doi.org/10.1007/s13201-019-1113-7

    Article  Google Scholar 

  • Obiora, D. N., Ajala, A. E., & Ibuot, J. C. (2015). Evaluation of aquifer protective capacity of overburden unit and soil corrosivity in Makurdi, Benue state, Nigeria, using electrical resistivity method. Journal of Earth System Science, 124(1), 125–135.

    Article  Google Scholar 

  • Obiora, D. N., Alhassan, U. D., Ibuot, J. C., & Okeke, F. N. (2016). Geoelectric evaluation of aquifer potential and vulnerability of Northern Paiko, Niger State, Nigeria. Water Environment Research, 88(7), 644–651. https://doi.org/10.2175/106143016X14609975746569

    Article  CAS  Google Scholar 

  • Oguama, B. E., Ibuot, J. C., Obiora, D. N., & Aka, M. (2019). Geophysical investigation of groundwater potential, aquifer parameters, and vulnerability: a case study of Enugu State College of Education (Technical) Model. Earth System Environment, 5, 1123–1133. https://doi.org/10.1007/s40808-019-00595-x

    Article  Google Scholar 

  • Okwu-Delunzu, V. U. (2015). Assessment of climate change 0n Enugu urban environment using temperature and rainfall information. International Journal of Scientific and Allied Research, 3(1), 38–49.

    Google Scholar 

  • Oladapo, M. I., Mohammed, M. Z., Adeoye, O. O., & Adetola, B. A. (2004). Geo-electrical Investigation of Ondo State housing coperation estate Ijapo, Akure, South Western Nigeria. Journal of Mining Geology, 40(1), 41–48.

    Article  Google Scholar 

  • Omeje, E. T., Obiora, D. N., Okeke, F. N., Ugbor, D. O., Ibuot, J. C., & Akpan, A. S. (2022). Aquifer flow unit analysis using stratigraphic modified Lorenz plot: a case study of Edem, eastern Nigeria. Journal of Engineering and Applied Science, 69, 33. https://doi.org/10.1186/s44147-022-00081-9

    Article  Google Scholar 

  • Oni, T. E., Omosuyi, G. O., & Akinlalu, A. A. (2017). Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, southwestern Nigeria, NRIAG. Journal of Astronomy and Geophysics, 6(2), 452–458. https://doi.org/10.1016/j.nrjag.2017.04.009

    Article  Google Scholar 

  • Ossai, M. N., Okeke, F. N., Obiora, D. N., & Ibuot, J. C. (2020). Vulnerability assessment of hydrogeologic units in parts of Enugu North, Southeastern Nigeria, using integrated electrical resistivity methods. Indian Journal of Science and Technology, 13(34), 3495–3509. https://doi.org/10.17485/IJST/v13i34.1366

    Article  Google Scholar 

  • Saidi, S., Bouri, S., & Ben-Dhia, H. (2013). Groundwater vulnerability and risk map** of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environmental Earth Sciences, 59, 1579–1588.

    Article  Google Scholar 

  • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation—A global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880. https://doi.org/10.5194/hess-14-1863-2010

    Article  Google Scholar 

  • Singh, K. P. (2005). Nonlinear estimation of aquifer parameters from surficial resistivity measurements. Hydrology and Earth System Science, 2, 917–930.

    Google Scholar 

  • Stempvoort, D. V., Ewert, L., & Wassenaar, L. (1993). Aquifer vulnerability index: A GIS—compatible method for groundwater vulnerability map**. Canad Water Resour J, 18(1), 25–37.

    Article  Google Scholar 

  • UNESCO (United Nations Educational, Scientific and Cultural Organization). (2012). World’s groundwater resources are suffering from poor governance. UNESCO Natural Sciences Sector News.

    Google Scholar 

  • Yakubu, J. A., Okwesili, N. A., Ibuot, J. C., & Obiora, D. N. (2022). Assessment of aquifer protective strength and groundwater quality within the University of Nigeria, Nsukka campus using geophysical and laboratory techniques. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-022-00201-4

    Article  Google Scholar 

  • Zohdy, A. A. R., Eaton, G. P., & Mabey, D. R. (1974). Application of surface geophysics to groundwater investigation. USGS Techniques of water resources investigations, Book 2, Chapter D1.

Download references

Acknowledgements

The authors are grateful to the Chief Joseph and Maria Omeje and Solid Earth Geophysics research group of the University of Nigeria, Nsukka, for their encouragement during this research.

Funding

The research was funded by the authors whose names are in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Field data acquisition and analysis were carried out by ETO, DNO, and JCI. Data interpretation and Manuscript writing was carried out by ETO, DNO, FNO, JCI, and VDO. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Emmanuel T. Omeje.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omeje, E.T., Obiora, D.N., Okeke, F.N. et al. Application of geoelectric technique and sensitivity analysis in assessment of aquifer vulnerability: a case study of Nsukka and Igbo-Etiti Area, Eastern Nigeria. Environ Dev Sustain 26, 17579–17615 (2024). https://doi.org/10.1007/s10668-023-03351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03351-5

Keywords

Navigation