Log in

A sustainable green–blue revolution in Pakistan: a new perspective from quantile regression analysis

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The paper explores the impact of the green–blue revolution on environmental sustainability proxied by production-based carbon emission and agro-environmental footprint in Pakistan between 1976 and 2020. The basic objective of this study is to evaluate and compare the impact of green–blue revolution on sustainable environment in different quantiles. Johansen co-integration test with trace and max eigenvalues determines the long-run relationship between green–blue revolution and environmental degradation in Pakistan. Using median quantile regression analysis, we find that agricultural machinery, pesticides, and aquaculture production are positive and significant factors of production-based carbon emissions with 0.49, 0.1, and 0.09 coefficient values, respectively, while fertilizers, agricultural credit, and HYV (high yield variety) seeds are not major determinants of production-based carbon emission. At the same time, high variety seeds and fertilizers enhance the agro-environmental footprint in Pakistan with 0.23 and 0.28 coefficients, respectively, by applying median quantile regression. Similarly, agricultural machinery, pesticides, agricultural credit, and aquaculture production are not the major determinants of agro-environmental footprint by using median quantile regression. However, the response of exogenous variables varies from quantile to quantile in the case of both environmental proxies. These results discuss implications for fruitful and effective policies and recommendations for a sustainable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmed, N., Thompson, S., & Glaser, M. (2019). Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environmental Management, 63(2), 159–172.

    Article  Google Scholar 

  • Ahmed, N., Thompson, S., & Turchini, G. M. (2020a). Organic aquaculture productivity, environmental sustainability, and food security: Insights from organic agriculture. Food Security. https://doi.org/10.1007/s12571-020-01090-3

    Article  Google Scholar 

  • Ahmed, N., Thompson, S., & Turchini, G. M. (2020b). Organic aquaculture productivity, environmental sustainability, and food security: Insights from organic agriculture. Food Security, 12(6), 1253–1267.

    Article  Google Scholar 

  • Ahmed, N., & Troell, M. (2010). Fishing for prawn larvae in Bangladesh: An important coastal livelihood causing negative effects on the environment. Ambio, 39(1), 20–29.

    Article  Google Scholar 

  • Ahmed, N., Ward, J. D., & Saint, C. P. (2014). Can integrated aquaculture-agriculture (IAA) produce “more crop per drop”? Food Security, 6(6), 767–779.

    Article  Google Scholar 

  • Alcamo, J. (2019). Water quality and its interlinkages with the Sustainable Development Goals. Current Opinion in Environmental Sustainability, 36, 126–140.

    Article  Google Scholar 

  • Aldieri, L., & Vinci, C. P. (2018). Green economy and sustainable development: The economic impact of innovation on employment. Sustainability, 10(10), 3541.

    Article  Google Scholar 

  • Ali, G., Ashraf, A., Bashir, M. K., & Cui, S. (2017). Exploring environmental Kuznets curve (EKC) in relation to green revolution: A case study of Pakistan. Environmental Science & Policy, 77, 166–171.

    Article  Google Scholar 

  • Allen, C., Metternicht, G., & Wiedmann, T. (2019). Prioritising SDG targets: Assessing baselines, gaps and interlinkages. Sustainability Science, 14(2), 421–438.

    Article  Google Scholar 

  • Alsayed, A. R., Isa, Z., Kun, S. S., & Manzi, G. (2020). Quantile regression to tackle the heterogeneity on the relationship between economic growth, energy consumption, and CO2 emissions. Environmental Modeling & Assessment, 25(2), 251–258.

    Article  Google Scholar 

  • Ashrafi, S., Mousavi-Kamazani, M., Zinatloo-Ajabshir, S., & Asghari, A. (2020). Novel sonochemical synthesis of Zn2V2O7 nanostructures for electrochemical hydrogen storage. International Journal of Hydrogen Energy, 45(41), 21611–21624.

    Article  CAS  Google Scholar 

  • Asumadu-Sarkodie, S., & Owusu, P. A. (2016). The relationship between carbon dioxide and agriculture in Ghana: A comparison of VECM and ARDL model. Environmental Science and Pollution Research, 23(11), 10968–10982.

    Article  CAS  Google Scholar 

  • Badeeb, R. A., & Lean, H. H. (2018). Asymmetric impact of oil price on Islamic sectoral stocks. Energy Economics, 71, 128–139.

    Article  Google Scholar 

  • Ben Jebli, M., & Ben Youssef, S. (2017). Renewable energy consumption and agriculture: Evidence for cointegration and Granger causality for Tunisian economy. International Journal of Sustainable Development & World Ecology, 24(2), 149–158.

    Article  Google Scholar 

  • Béné, C., Arthur, R., Norbury, H., Allison, E. H., Beveridge, M., Bush, S., & Squires, D. (2016). Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence. World Development, 79, 177–196.

    Article  Google Scholar 

  • Bergleiter, S., & Meisch, S. (2015). Certification standards for aquaculture products: Bringing together the values of producers and consumers in globalised organic food markets. Journal of Agricultural and Environmental Ethics, 28(3), 553–569.

    Article  Google Scholar 

  • Blaylock, R. B., & Bullard, S. A. (2014). Counter-insurgents of the blue revolution? Parasites and diseases affecting aquaculture and science. The Journal of Parasitology, 100(6), 743–755.

    Article  Google Scholar 

  • Carbonara, P., Scolamacchia, M., Spedicato, M. T., Zupa, W., McKinley, R. S., & Lembo, G. (2015). Muscle activity as a key indicator of welfare in farmed European sea bass (D icentrarchus labrax L. 1758). Aquaculture Research, 46(9), 2133–2146.

    Article  CAS  Google Scholar 

  • Cassman, K. G. (2007). Editorial response by Kenneth Cassman: Can organic agriculture feed the world—science to the rescue? Renewable Agriculture and Food Systems, 22(2), 83–84.

    Google Scholar 

  • Censkowsky, U., & Altena, A. (2013). Sco** study on organic aquaculture in 5 east African countries. In: Bonn: International Federation of Organic Agriculture Movements.

  • Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment, 613, 829–839.

    Article  Google Scholar 

  • Connor, D. (2008). Organic agriculture cannot feed the world. Field Crops Research, 106(2), 187.

    Article  Google Scholar 

  • Connor, D. J. (2013). Organically grown crops do not a crop** system make and nor can organic agriculture nearly feed the world. Field Crops Research, 144(20), 145–147.

    Article  Google Scholar 

  • De Silva, S. S., Nguyen, T. T., Turchini, G. M., Amarasinghe, U. S., & Abery, N. W. (2009). Alien species in aquaculture and biodiversity: A paradox in food production. Ambio, 38, 24–28.

    Article  Google Scholar 

  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: Journal of the Econometric Society, 49, 1057–1072.

    Article  Google Scholar 

  • Dyer, J., & Desjardins, R. (2003). The impact of farm machinery management on the greenhouse gas emissions from Canadian agriculture. Journal of Sustainable Agriculture, 22(3), 59–74.

    Article  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50, 987–1007.

    Article  Google Scholar 

  • Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica: Journal of the Econometric Society. https://doi.org/10.2307/1913236

    Article  Google Scholar 

  • Fess, T. L., & Benedito, V. A. (2018). Organic versus conventional crop** sustainability: A comparative system analysis. Sustainability, 10(1), 272.

    Article  Google Scholar 

  • Franzen, A., & Mader, S. (2018). Consumption-based versus production-based accounting of CO2 emissions: Is there evidence for carbon leakage? Environmental Science & Policy, 84, 34–40.

    Article  CAS  Google Scholar 

  • Gilbert, N. (2012). One–third of our greenhouse gas emissions come from agriculture. Nature News, 31, 10–12.

    Google Scholar 

  • Gould, D., Compagnoni, A., & Lembo, G. (2019). Organic aquaculture: Principles, standards and certification. In Organic Aquaculture pp. 1–22 Springer.

  • Hamilton, S. (2013). Assessing the role of commercial aquaculture in displacing mangrove forest. Bulletin of Marine Science, 89(2), 585–601.

    Article  Google Scholar 

  • Henriksson, P. J., Rico, A., Troell, M., Klinger, D. H., Buschmann, A. H., Saksida, S., & Zhang, W. (2018). Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: A review from a systems perspective. Sustainability Science, 13(4), 1105–1120.

    Article  Google Scholar 

  • Hou, Y., Velthof, G. L., & Oenema, O. (2015). Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Global Change Biology, 21(3), 1293–1312.

    Article  Google Scholar 

  • Hungate, B. A., Van Groenigen, K. J., Six, J., Jastrow, J. D., Luo, Y., De Graaff, M. A., & Osenberg, C. W. (2009). Assessing the effect of elevated carbon dioxide on soil carbon a comparison of four meta-analyses. Global Change Biology, 15(8), 2020–2034.

    Article  Google Scholar 

  • Jalal, A. (2012). The Oxford Companion to Pakistani History: Oxford University Press.

  • Janzen, H. (2005). Soil carbon: A measure of ecosystem response in a changing world? Canadian Journal of Soil Science, 85(Special Issue), 467–480.

    Article  CAS  Google Scholar 

  • Jebli, M. B., & Youssef, S. B. (2017). The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological Indicators, 74, 295–301.

    Article  Google Scholar 

  • Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254.

    Article  Google Scholar 

  • Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica: Journal of the Econometric Society, 59, 1551–1580.

    Article  Google Scholar 

  • Jonell, M., & Henriksson, P. J. G. (2015). Mangrove–shrimp farms in Vietnam—Comparing organic and conventional systems using life cycle assessment. Aquaculture, 447, 66–75.

    Article  Google Scholar 

  • Junankar, P. R. (2016). Development Economics. Springer.

    Google Scholar 

  • Kasztelan, A. (2017). Green growth, green economy and sustainable development: Terminological and relational discourse. Prague Economic Papers, 26(4), 487–499.

    Article  Google Scholar 

  • Kerr, M., & Potthast, T. (2018). 71. As Close as Possible to Nature: Possibilities and Constraints for Organic Aquaculture Systems (p. 450). Wageningen Academic Publishers.

    Google Scholar 

  • Khan, M., Amir, P., Ramay, S., Munawar, Z., & Ahmad, V. (2011). National Economic & Environmental Development Study. Paper presented at the Ministry of Environment, Islamabad, Pakistan. United Nations Framework Convention on Climate Change.

  • Kijima, M., Nishide, K., & Ohyama, A. (2010). Economic models for the environmental Kuznets curve: A survey. Journal of Economic Dynamics and Control, 34(7), 1187–1201.

    Article  Google Scholar 

  • Killebrew, K., & Wolff, H. (2010). Environmental impacts of agricultural technologies. Agricultural Policy and Statistics Team of the Bill & Melinda Gates Foundation, EPAR Brief No 65. In.

  • Kumar, P. S., Carolin, C. F., & Varjani, S. J. (2018). Pesticides bioremediation. In Bioremediation: Applications for Environmental Protection and Management (pp. 197–222): Springer.

  • Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1–3), 159–178.

    Article  Google Scholar 

  • Lavrinenko, O., Ignatjeva, S., Ohotina, A., Rybalkin, O., & Lazdans, D. (2019). The role of green economy in sustainable development (case study: The EU states). Entrepreneurship and Sustainability Issues, 6(3), 1113.

    Article  Google Scholar 

  • Lembo, G., & Mente, E. (2019). Organic Aquaculture: Impacts and Future Developments. Springer.

    Book  Google Scholar 

  • Liu, X., Zhang, S., & Bae, J. (2017a). The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. Journal of Cleaner Production, 164, 1239–1247.

    Article  Google Scholar 

  • Liu, X., Zhang, S., & Bae, J. (2017b). The nexus of renewable energy-agriculture-environment in BRICS. Applied Energy, 204, 489–496.

    Article  Google Scholar 

  • Loiseau, E., Saikku, L., Antikainen, R., Droste, N., Hansjürgens, B., Pitkänen, K., & Thomsen, M. (2016). Green economy and related concepts: An overview. Journal of Cleaner Production, 139, 361–371.

    Article  Google Scholar 

  • Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640–663.

    Article  Google Scholar 

  • Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In: Plant, soil and microbes (pp. 253–269): Springer.

  • Majeed, M. T., Tauqir, A., Mazhar, M., & Samreen, I. (2021). Asymmetric effects of energy consumption and economic growth on ecological footprint: new evidence from Pakistan. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13130-2

    Article  Google Scholar 

  • Mariantonietta, F., Alessia, S., Francesco, C., & Giustina, P. (2018). GHG and cattle farming: CO-assessing the emissions and economic performances in Italy. Journal of Cleaner Production, 172, 3704–3712.

    Article  Google Scholar 

  • McArthur, J. W., & McCord, G. C. (2017). Fertilizing growth: Agricultural inputs and their effects in economic development. Journal of Development Economics, 127, 133–152.

    Article  Google Scholar 

  • Meisch, S., & Stark, M. (2019). Recirculation aquaculture systems: Sustainable innovations in organic food production? Food Ethics, 4(1), 67–84.

    Article  Google Scholar 

  • Miranda, C. D., Godoy, F. A., & Lee, M. R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Frontiers in Microbiology, 9, 1284.

    Article  Google Scholar 

  • Mohamad, R. S., Verrastro, V., Al Bitar, L., Roma, R., Moretti, M., & Al Chami, Z. (2016). Effect of different agricultural practices on carbon emission and carbon stock in organic and conventional olive systems. Soil Research, 54(2), 173–181.

    Article  Google Scholar 

  • Mostafaeipour, A., & Sadeghi Sedeh, A. (2019). Investigation of solar energy utilization for production of hydrogen and sustainable chemical fertilizer: A case study. International Journal of Energy Research, 43(14), 8314–8336.

    CAS  Google Scholar 

  • Muller, A., Jawtusch, J., & Gattinger, A. (2011). Mitigating greenhouse gases in agriculture–a challenge and opportunity for agricultural policies. Diakonisches Werk der Evangelischen Kirche in Deutschland e. V., Stuttgart. Abrufbar unter. http://orgprints.org/19989.

  • Muller, A., Schader, C., Scialabba, N.E.-H., Brüggemann, J., Isensee, A., Erb, K.-H., & Stolze, M. (2017). Strategies for feeding the world more sustainably with organic agriculture. Nature Communications, 8(1), 1–13.

    Article  CAS  Google Scholar 

  • Nathaniel, S. P., Nwulu, N., & Bekun, F. (2021). Natural resource, globalization, urbanization, human capital, and environmental degradation in Latin American and Caribbean countries. Environmental Science and Pollution Research, 28(5), 6207–6221.

    Article  Google Scholar 

  • Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017–1024.

    Article  CAS  Google Scholar 

  • Naylor, R. L., Williams, S. L., & Strong, D. R. (2001). Aquaculture–A gateway for exotic species. American Association for the Advancement of Science., 294(5547), 1655–1656.

    Article  CAS  Google Scholar 

  • Ng, S., & Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69(6), 1519–1554.

    Article  Google Scholar 

  • Nouman, M., Khan, D., Ul Haq, I., Naz, N., Zahra, B. T. E., & Ullah, A. (2021). Assessing the implication of green revolution for food security in Pakistan: A multivariate cointegration decomposition analysis. Journal of Public Affairs. https://doi.org/10.1002/pa.2758

    Article  Google Scholar 

  • Nwokoro, C. V., & Chima, F. O. (2017). Impact of environmental degradation on agricultural production and poverty in rural Nigeria. American International Journal of Contemporary Research, 7, 6–14.

    Google Scholar 

  • Olanipekun, I. O., Olasehinde-Williams, G. O., & Alao, R. O. (2019). Agriculture and environmental degradation in Africa: The role of income. Science of the Total Environment, 692, 60–67.

    Article  CAS  Google Scholar 

  • Önder, M., Ceyhan, E., & Kahraman, A. (2011). Effects of agricultural practices on environment. In Paper presented at the International Conference on Biology, Environment and Chemistry, Singapore.

  • Ottolenghi, F., Silvestri, C., Giordano, P., Lovatelli, A., & New, M. B. (2004). Capture-based aquaculture: The fattening of eels, froupers, tunas and yellowtails. Rome: Food and Agriculture Organization of the United Nations.

  • Pant, K. P. (2009). Effects of agriculture on climate change: A cross country study of factors affecting carbon emissions. Journal of Agriculture and Environment, 10, 84–102.

    Article  Google Scholar 

  • Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.

    Article  Google Scholar 

  • Prastiyo, S. E., & Hardyastuti, S. (2020). How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia. Environmental Science and Pollution Research, 27(33), 42092–42103.

    Article  CAS  Google Scholar 

  • Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean & Coastal Management, 49(9–10), 531–545.

    Article  Google Scholar 

  • Qasim, M., Anees, M. M., Ghani, M. U., Malik, J., Khalid, M., & Bashir, A. (2014). Environment degradation cause by urbanization in Pakistan (A review paper). Bulletin of Energy Economics, 2(3), 62–71.

  • Qiao, H., Zheng, F., Jiang, H., & Dong, K. (2019). The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Science of the Total Environment, 671, 722–731.

    Article  CAS  Google Scholar 

  • Rafiq, S., Salim, R., & Apergis, N. (2016). Agriculture, trade openness and emissions: An empirical analysis and policy options. Australian Journal of Agricultural and Resource Economics, 60(3), 348–365.

    Article  Google Scholar 

  • Ramachandra, T., Aithal, B. H., & Sreejith, K. (2015). GHG footprint of major cities in India. Renewable and Sustainable Energy Reviews, 44, 473–495.

    Article  Google Scholar 

  • Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty–first century. Nature Plants, 2(2), 1–8.

    Article  Google Scholar 

  • Rehman, A., Ma, H., & Ozturk, I. (2021). Do industrialization, energy importations, and economic progress influence carbon emission in Pakistan. Environmental Science and Pollution Research, 28, 1–13.

    Article  Google Scholar 

  • Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences, 113(2), 344–349.

    Article  CAS  Google Scholar 

  • Robb, D. H., MacLeod, M., Hasan, M. R., & Soto, D. (2017). Greenhouse gas emissions from aquaculture: A life cycle assessment of three Asian systems. FAO Fisheries and Aquaculture Technical Paper(609).

  • Seufert, V., & Ramankutty, N. (2017). Many shades of gray—The context-dependent performance of organic agriculture. Science Advances, 3(3), e1602638.

    Article  Google Scholar 

  • Shah, S. A. R., Naqvi, S. A. A., Anwar, S., Shah, A. A., & Nadeem, A. M. (2022). Socio-economic impact assessment of environmental degradation in Pakistan: Fresh evidence from the Markov switching equilibrium correction model. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-02013-8

  • Shcherbak, I., Millar, N., & Robertson, G. P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences, 111(25), 9199–9204.

    Article  CAS  Google Scholar 

  • Simpson, S. (2011). The blue food revolution. Scientific American, 304(2), 54–61.

    Article  Google Scholar 

  • Sugiawan, Y., & Managi, S. (2016). The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy. Energy Policy, 98, 187–198.

    Article  Google Scholar 

  • Taranger, G. L., Karlsen, Ø., Bannister, R. J., Glover, K. A., Husa, V., Karlsbakk, E., & Finstad, B. (2015). Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES Journal of Marine Science, 72(3), 997–1021.

    Article  Google Scholar 

  • Thomas, N., Lucas, R., Bunting, P., Hardy, A., Rosenqvist, A., & Simard, M. (2017). Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE, 12(6), e0179302.

    Article  Google Scholar 

  • Trewavas, A. (2001). Urban myths of organic farming. Nature, 410(6827), 409–410.

    Article  CAS  Google Scholar 

  • Tripathi, A., & Mishra, A. K. (2017). Knowledge and passive adaptation to climate change: An example from Indian farmers. Climate Risk Management, 16, 195–207.

    Article  Google Scholar 

  • Ullah, A., & Khan, D. (2020a). Testing environmental Kuznets curve hypothesis in the presence of green revolution: A cointegration analysis for Pakistan. Environmental Science and Pollution Research, 27, 1–17.

    Article  Google Scholar 

  • Ullah, A., & Khan, D. (2020b). Testing environmental Kuznets curve hypothesis in the presence of green revolution: A cointegration analysis for Pakistan. Environmental Science and Pollution Research, 27(10), 11320–11336.

    Article  CAS  Google Scholar 

  • Ullah, A., Khan, D., Khan, I., & Zheng, S. (2018). Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. Environmental Science and Pollution Research, 25(14), 13938–13955.

    Article  CAS  Google Scholar 

  • Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove Forests: One of the World’s Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. BioScience, 51(10), 807–815.

    Article  Google Scholar 

  • Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., & Smith, P. (2017). Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237, 234–241.

    Article  CAS  Google Scholar 

  • **e, B., Qin, J., Yang, H., Wang, X., Wang, Y.-H., & Li, T.-Y. (2013). Organic aquaculture in China: A review from a global perspective. Aquaculture, 414, 243–253.

    Article  Google Scholar 

  • Xu, P., Zhang, Y., Gong, W., Hou, X., Kroeze, C., Gao, W., & Luan, S. (2015). An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution. Atmospheric Environment, 115, 141–148.

    Article  CAS  Google Scholar 

  • Yadav, I. C., & Devi, N. L. (2017). Pesticides classification and its impact on human and environment. Environmental Science and Engineering, 6, 140–158.

    Google Scholar 

  • Yuan, J., **ang, J., Liu, D., Kang, H., He, T., Kim, S., & Ding, W. (2019). Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nature Climate Change, 9(4), 318–322.

    Article  Google Scholar 

  • Zahra, S., Khan, D., & Nouman, M. (2022). Fiscal policy and environment: A long-run multivariate empirical analysis of ecological footprint in Pakistan. Environmental Science and Pollution Research, 29(2), 2523–2538.

  • Zahra, S., & Badeeb, R. A. (2022). The impact of fiscal decentralization, green energy, and economic policy uncertainty on sustainable environment: A new perspective from ecological footprint in five OECD countries. Environmental Science and Pollution Research, 29, 1–20.

    Article  Google Scholar 

  • Zhang, T., Wooster, M. J., Green, D. C., & Main, B. (2015). New field-based agricultural biomass burning trace gas, PM2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmospheric Environment, 121, 22–34.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Ghasemian, N., & Salavati-Niasari, M. (2020). Green synthesis of Ln2Zr2O7 (Ln= Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceramics International, 46(1), 66–73.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Morassaei, M. S., & Salavati-Niasari, M. (2019a). Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. Journal of Cleaner Production, 222, 103–110.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., & Salavati-Niasari, M. (2017). Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes. Journal of Molecular Liquids, 243, 219–226.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Salehi, Z., Amiri, O., & Salavati-Niasari, M. (2019b). Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. International Journal of Hydrogen Energy, 44(36), 20110–20120.

    Article  CAS  Google Scholar 

  • Zivot, E., & Andrews, D. W. K. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 20(1), 25–44.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SZ helped in conceptualization, methodology, formal analysis, investigation, writing—review & editing. SARS was involved in review & editing. RAB contributed to reviews and methodology.

Corresponding author

Correspondence to Samia Zahra.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning the research, authorship, and publication of this article.

Ethical approval

Not Applicable.

Consent to participate

I am free to contact any of the people involved in the research to seek further clarification and information.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, S., Shah, S.A.R. & Badeeb, R.A. A sustainable green–blue revolution in Pakistan: a new perspective from quantile regression analysis. Environ Dev Sustain 25, 14975–15002 (2023). https://doi.org/10.1007/s10668-022-02698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02698-5

Keywords

Navigation