Log in

Solar hydrogen production in India

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Tap** the full potential of clean, renewable energy resources to effectively meet the steadily increasing energy demand is the critical need of the hour and an important proactive step towards achieving sustainability. India's solar energy consumption has witnessed a nearly twofold increase from 6.76 GW in 2015–16 to 12.28 in 2016–17. Since India enjoys the advantage of high solar insolation, increasing the efficiency of solar power systems can tremendously boost clean energy generation. The escalating energy crisis currently faced by India has compelled scientists and researchers to focus on identifying novel economical and efficient technologies for large-scale energy production. Direct utilization of solar energy for fuel conversion has attained greater importance. In this context, generation of hydrogen from industrial wastewater by using solar energy offers significant economic as well as environmental benefits. This investigative review paper focuses on the importance of the solar photocatalytic process to recover the clean energy H2 from sulphide containing industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Source: Energy Statistics (2018)

Fig. 2

Source: Metcalf and Eddy

Fig. 3

Source: Energy Statistics (2018)

Fig. 4

source wise installed Capacity in India. Source: Energy Statistics (2018)

Fig. 5

Similar content being viewed by others

References

  • Afshin, P. (2012). Photocatalytic activity of quantum dots incorporated in molecular sieves for generation of hydrogen. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 94, 18–22.

    Article  Google Scholar 

  • Al-Shamma, L. M., & Naman, S. A. (1989). Kineticstudy for thermal production of hydrogen from H2S by heterogeneous catalysis of vanadium sul5de in a @ow system. International Journal of Hydrogen Energy, 14, 173–179.

    Article  CAS  Google Scholar 

  • Anthony Raja, M., & Preethi, V. (2020a). Photocatalytic hydrogen production using bench-scale trapezoidal photocatalytic reactor under visible and solar irradiation. International Journal of Hydrogen Energy, 45, 7574–7583.

    Article  CAS  Google Scholar 

  • Anthony Raja, M., & Preethi, V. (2020b). Performance of square and trapezoidal photoreactors for solar hydrogen recovery from various industrial sulphide wastewater using CNT & Ce3+ doped TiO2. International Journal of Hydrogen Energy, 45, 7616–7626.

    Article  CAS  Google Scholar 

  • Asadullah, M., Ito, S. I., Kunimori, K., Yamada, M., & Tomishige, K. (2002). Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification. Environmental Science and Technology, 36, 4476–4481.

    Article  CAS  Google Scholar 

  • Atif, K., & Musa, Ş. (2002). Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. International Journal of Hydrogen Energy, 27, 363–367.

    Article  Google Scholar 

  • Ayad, F. A., Tarek, A. K., Falah, H. H., Ralf, D., & Detlef, W. B. (2013). Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity. Applied Catalysis A: General, 466, 32–37.

    Article  Google Scholar 

  • Babich, J. A. M. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel, 82, 607–631.

    Article  CAS  Google Scholar 

  • Bai, X. F., Cao, Y., & Wub, W. (2011). ‘Photocatalytic decomposition of H2S to produce H2 over CdS nanoparticles formed in HY-zeolite pore. Renewable Energy, 36, 2589–2592.

    Article  CAS  Google Scholar 

  • Balat, H., & Kırtay, E. (2010). Hydrogen from biomass–present scenario and future prospects. International Journal of Hydrogen Energy, 35, 7416–7426.

    Article  CAS  Google Scholar 

  • Baniasadi, E., Dincer, I., & Naterer, G. F. (2013). Measured effects of light intensity and catalyst concentration on photocatalytic hydrogen and oxygen production with zinc sulfide suspensions. International Journal of Hydrogen Energy, 38, 9158–9168.

    Article  CAS  Google Scholar 

  • Barbeni, M., Pelizzetti, E., Borgarello, E., Serpone, N., Grätzel, M., & Balducci, L. (1985). Hydrogen from hydrogen sulfide cleavage - improved efficiencies via modification of semiconductor particulates. International Journal of Hydrogen Energy, 10, 249–253.

    Article  CAS  Google Scholar 

  • Bellows, R. J. (1999). Technical challenges for hydrocarbon fuel reforming. Baltimore: DOE.

    Google Scholar 

  • Bessakhouad, Y., & Trari, M. (2002). Photocatalytic hydrogen production from suspensions of spinel powders AMnO4 (A = Cu & Zn). International Journal of Hydrogen Energy, 27, 357–362.

    Article  Google Scholar 

  • Bessekhouad, Y., Mohammedi, M., & Trari, M. (2002). Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst. Solar Energy Materials and Solar Cells, 73, 339–350.

    Article  CAS  Google Scholar 

  • Bessekhouad, Y., Trari, M., & Doumerc, J. P. (2003). CuMnO2, a novel hydrogen photoevolution catalyst. International Journal of Hydrogen Energy, 28, 43–48.

    Article  CAS  Google Scholar 

  • Borgarello, E., & Serpone, N. (1985). Hydrogen production through micro- heterogeneous photocatalysis of hydrogen sulfide cleavage. The thiosulfate cycle. International Journal of Hydrogen Energy, 10, 737–741.

    Article  CAS  Google Scholar 

  • Bradley, M. J. (2000). Future Wheels Interviews with 44 Global Experts on the Future of Fuel Cells for Transportation and Fuel Cell Infrastructure and a Fuel Cell Primer (p. 89). Northeast Advanced Vehicle Consortium.

  • Bromberg, L., Cohn, D. R., & Rabinovich, A. (1997). Plasma reformer-fuel cell system for decentralized power applications. International Journal of Hydrogen Energy, 22, 83–94.

    Article  CAS  Google Scholar 

  • Bromberg, L., Cohn, D. R., Rabinovich, A., & Alexeev, N. (1999). Plasma catalytic reforming of methane. International Journal of Hydrogen Energy, 24, 1131–1137.

    Article  CAS  Google Scholar 

  • Brooks, K. P., Davis, J. M., Fischer, C. M., King, D. L., et al. (2005). Fuel Reformation: Microchannel Reactor Design. In Y. Wang & J. D. Holladay (Eds.), Microreactor Technology and Process Intensification (pp. 238–257). Washington, DC: American Chemical Society. https://doi.org/10.1021/bk-2005-0914.ch015

    Chapter  Google Scholar 

  • Burnett, P. T., Huff, G. A., Pradhan, V. R., Hodges, M., Glassett, J. A., et al. (2000). The European Refining Technology Conference. Italy.

  • Cheng, W. Y., Yu, T. H., Chao, K. J., & Lu, S. Y. (2013). Cu2O-decorated CdS nanostructures for high efficiency visible light driven hydrogen production. International Journal of Hydrogen Energy, 38, 9665–9672.

    Article  CAS  Google Scholar 

  • Cheng, Z., Wang, F., Liang, H., Hu, S., & Li, H. (2018). Photon-absorption-based explanation of ultrasonic-assisted solar photochemical splitting of water to improve hydrogen production. International Journal of Hydrogen Energy, 43, 14439–14450.

    Article  CAS  Google Scholar 

  • Chivers, T., & Lau, C. (1985). The thermal decomposition of hydrogen sul5de over alkali metal sul5des and polysul5des. International Journal of Hydrogen Energy, 10, 21–25.

    Article  CAS  Google Scholar 

  • Chivers, T., & Lau, C. (1987). The use of thermal diffusion column reactors for the production of hydrogen and sulfur from the thermal decomposition of hydrogen sul5de over transition metal sul5des. International Journal of Hydrogen Energy, 12, 561–569.

    Article  CAS  Google Scholar 

  • Chivers, T., Hyne, J., & Lau, C. (1980). The thermal decomposition of hydrogen sul5de over transition metal sul5des. International Journal of Hydrogen Energy, 5, 499–506.

    Article  CAS  Google Scholar 

  • Cox, B. G., Clarke, P. F., & Pruden, B. B. (1998). Economics of thermal dissociation of H2S to produce hydrogen. International Journal of Hydrogen Energy, 23, 531–544.

    Article  CAS  Google Scholar 

  • Dan, M., **ang, J., Yang, J., Wu, F., Han, C., & Zhong, Y. (2021). Beyond hydrogen production: solar-driven H2S-donating value-added chemical production over MnxCd1−xS/CdyMn1−yS catalyst. Applied Catalysis B: Environmental, 284, 119706.

    Article  CAS  Google Scholar 

  • Das, D., & Verziroglu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  • Davydov, A., Chuang, K. T., & Sanger, A. R. (1998). Mechanism of H2S oxidation by ferricoxide and hydroxide surfaces. Journal of Physical Chemistry, 102, 4745–4752.

    Article  CAS  Google Scholar 

  • Demirbas, M. F. (2006). Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources, 28, 245–252.

    Article  CAS  Google Scholar 

  • Doede, C. M., & Walker, C. A. (1955). Photochemical engineering. Chemical Engineering Journal, 62, 159–178.

  • EIA, International Energy Outlook (2015). www.eia.gov/ies.

  • EIA, International Energy Statistics database (as of November 2012), www.eia.gov/ies.

  • Energy Statistics (2018). http:// www.mospi.gov.in.

  • EIA, International Energy Outlook 2011, DOE/EIA-0484 (September 2011)

  • Esakkiappan, S., **, O. B., Sang, M. L., Sang, J. M., & Ki-jeong, K. (2008). ‘Dissociation of H2S under visible light irradiation (λ ≥ 420 nm) with FeGaO3 photocatalysts for the production of hydrogen. International Journal of Hydrogen Energy, 33, 6586–6594.

    Article  Google Scholar 

  • Etiope, G., Guerra, M., & Raschi, A. (2005). Carbon dioxide and radon geohazards over a gas-bearing fault in the Siena Graben (Central Italy). Terrestial, Atmospheric and Oceanic Sciences, 16, 885–896.

    Article  Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 37, 238.

    Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.

    Article  CAS  Google Scholar 

  • Funk, J. E. (2001). Thermochemical hydrogen production: past and present. International Journal of Hydrogen Energy, 26, 185–190.

    Article  CAS  Google Scholar 

  • Gargurevich, I. A. (2005). Hydrogen sulfide combustion: relevant issues under claus furnace conditions. Industrial and Engineering Chemistry Research, 44, 7706–7729.

    Article  CAS  Google Scholar 

  • Gayoung, L., & Misook, K. (2013). Physicochemical properties of core/shell structured pyrite FeS2/anatase TiO2 composites and their photocatalytic hydrogen production performances. Current Applied Physics, 13, 1482–1489.

    Article  Google Scholar 

  • Gillies ADS, Wu HW, Kizil MS, Harvey T (2000) The mining challenge of coal seam hydrogen sulfide. In: proceedings queensland mining industry health and safety conference, Townsville, pp 375

  • Gonell, F., Puga, A. V., Julian-Lopez, B., & Garcia, H. (2016). Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulphide. Applied Catalysis B: Environmental, 180, 263–270.

    Article  CAS  Google Scholar 

  • Guijun, M. A., Hongjian, Y., Baojun, M. A., Hongfu, J., Fuyu, W., & Can, L. I. (2008). Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction. Chinese Journal of Catalysis, 29(4), 313–315.

    Article  Google Scholar 

  • Guo, Y. S., Fang, W. J., & Lin, R. S. (2005). Zhejiang DX, coking-inhibition of pyrolysis-cracking of endothermic hydrocarbon fuel. Journal of Zhejiang University (Engineering Science), 39, 538–541.

    CAS  Google Scholar 

  • Gurunathan, K., Baeg, J. O., Lee, S. M., Subramanian, E., Moon, S.-J., & Kong, K.-J. (2008a). Visible light active pristine and Fe3+ doped CuGa2O4 spinel photocatalysts for solar hydrogen production. International Journal of Hydrogen Energy, 33, 2646–2652.

    Article  CAS  Google Scholar 

  • Gurunathan, K., **-Ook, B., Sang, M. L., Subramanian, E., & Ki-Jeong, K. (2008b). Visible light assisted highly efficient hydrogen production from H2S decomposition by CuGaO2 and CuGa1−xInxO2 delafossite oxides bearing nanostructured co-catalysts. Catalysis Communication, 9, 395–402.

    Article  CAS  Google Scholar 

  • Haifeng, D., **nfa, D., & Yingchao, D. (2013). Yan Zhang, Stuart Hampshire TiO2 nanotubes coupled with nano-Cu(OH)2 for highly efficient photocatalytic hydrogen production. International Journal of Hydrogen Energy, 38, 2126–2135.

    Article  Google Scholar 

  • Hao, X., Hou, G., Zheng, P., Liu, R., & Liu, C. (2016). H2S in-situ removal from biogas using a tubular zeolite/TiO2 photocatalytic reactor and the improvement on methane production. Chemical Engineering Journal, 294, 105–110.

    Article  CAS  Google Scholar 

  • Hendrickson, R. G., Chang, A., & Hamilton, R. (2004). Co-worker fatalities from hydrogen sulfide. American Journal of Industrial Medicine, 45, 346–350.

    Article  CAS  Google Scholar 

  • Herrmann, J. M., Duchamp, C., Karkmaz, M., et al. (2007). Environmental green chemistry as defined by photocatalysis. Journal of Hazardous Materials, 146, 624–629.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  • Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139, 244–260.

    Article  CAS  Google Scholar 

  • https://simple.wikipedia.org/wiki/Solar_energy

  • https://www.construction21.org/articles/h/efficiency-of-solar-energy-harvesting.html

  • Huang, C., & T-Raissi, A. (2008). Liquid hydrogen production via hydrogen sulfide methane reformation. Journal of Power Sources, 175, 464–472.

    Article  CAS  Google Scholar 

  • Huirong, L., & Lie**, G. (2010). Synthesis, characterization and photocatalytic performances of Cu2MoS4. International Journal of Hydrogen Energy, 35, 7104–7109.

    Article  Google Scholar 

  • Hyeonju, L., Yu**, P., & Misook, K. (2013). Synthesis of characterization of ZnxTiyS and its photocatalytic activity for hydrogen production from methanol/water photo-splitting. Journal of Industrial and Engineering Chemistry, 19, 1162–1168.

    Article  Google Scholar 

  • Jang, J. S., Li, W., Oh, S. H., & Lee, J. S. (2006). Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chemical Physics Letters, 425, 278–282.

    Article  CAS  Google Scholar 

  • Jian-Ying, H., Ying-Yong, W., & **-Li, T. (2013). Guo-Qiang**, **ang-YunGuo, SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catalysis Today, 212, 220–224.

    Article  Google Scholar 

  • Jiawen, L., Tao, D., Zhonghua, L., **gxiang, Z., Shuying, L., & Jihong, L. (2013). Photocatalytic hydrogen production over In2S3–Pt–Na2Ti3O7nanotube films under visible light irradiation. Ceramics International, 39, 8059–8063.

    Article  Google Scholar 

  • **g, D., Liu, M., Chen, Q., & Guo, L. (2010). Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process. International Journal of Hydrogen Energy, 35, 8521–8527.

    Article  CAS  Google Scholar 

  • Joensen, F., & Reostrup-Neilsen, J. R. (2002). Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources, 105, 195–201.

    Article  CAS  Google Scholar 

  • Jum, S. J., Hyun, G. K., Upendra, A. J., Ji, W. J., & Jae, S. L. (2008). Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. International Journal of Hydrogen Energy, 33, 5975–5980.

    Article  Google Scholar 

  • Kai, Z., Dengwei, J., Chanjuan, X., & Lie**, G. (2007). Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method. International Journal of Hydrogen Energy, 32, 4685–4691.

    Article  Google Scholar 

  • Kanade, K. G., Kale, B. B., Aiyer, R. C., & Das, B. K. (2006). Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Materials Research Bulletin, 41, 590–600.

    Article  CAS  Google Scholar 

  • Kanade, K. G., Baeg, J. O., Kale, B. B., Lee, S. M., Moon, S.-J., & Kong, K.-J. (2007). Rose-red color oxynitride Nb2Zr6O17-xNx: a visible light photocata- lyst to hydrogen production. International Journal of Hydrogen Energy, 32, 4678–4684.

    Article  CAS  Google Scholar 

  • Kanade, K. G., **-Ook, B., Ki-jeong, K., Kale, B. B., Sang Mi, L., Sang-**, M., Chul Wee, L., & Songhun, Y. (2008). A new layer perovskites Pb2Ga2Nb2O10 and RbPb2Nb2O7: an efficient visible light driven photocatalysts to hydrogen generation. International Journal of Hydrogen Energy, 33, 6904–6912.

    Article  CAS  Google Scholar 

  • Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38, 569–582.

    Article  CAS  Google Scholar 

  • Kato, H., Asakura, K., & Kudo, A. (2003). Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3Photocatalysts with high crystallinity and surface nanostructure. Journal of American Chemical Society, 125, 3082–3089.

    Article  CAS  Google Scholar 

  • Kim, H. G., Hwang, D. W., & Lee, J. S. (2004). Anundoped, single-phase oxide photocatalyst working under visible light. Journal of American Chemical Society, 126, 8912.

    Article  CAS  Google Scholar 

  • Koroneos, C., Dompros, A., Roumbas, G., & Moussiopoulos, N. (2004). Life cycle assessment of hydrogen fuel production processes. International Journal of Hydrogen Energy, 29, 1443–1450.

    Article  CAS  Google Scholar 

  • Kovacs, K. L., Maroti, G., & Rakhely, G. (2006). A novel approach for biohydrogen production. International Journal of Hydrogen Energy, 31, 1460–1468.

    Article  CAS  Google Scholar 

  • Krummenacher, J. J., West, K. N., & Schmidt, L. D. (2003). Catalytic partial oxidation of higher hydrocarbons at millisecond contact times: decane, hexadecane, and diesel fuel. Journal of Catalysis, 215, 332–343.

    Article  CAS  Google Scholar 

  • Krumpelt, M., Krause, T. R., Carter, J. D., Kopasz, J. P., et al. (2002). Fuel processing for fuel cell systems in transportation and portable power applications. Catalysis Today, 77, 3–16.

    Article  CAS  Google Scholar 

  • Krumpelt, M. (1999). Fuel Processing Session Summary. MD: Baltimore.

    Google Scholar 

  • Lashgari, M., & Ghanimati, M. (2018). Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel. Journal of Hazardous Materials, 345, 10–17.

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Kosourov SN, Ghirardi ML, et al. (2008) Biotechnology, in press

  • Lawan, K., Surakerk, O., Tarawipa, P., & Sumaeth, C. (2013). Sol–gel-synthesized mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystals and their photocatalytic sensitized H2production activity under visible light irradiation. Materials Science in Semiconductor Processing, 16, 667–678.

    Article  Google Scholar 

  • Lee, E. H., Jung, K. D., Joo, O. S., & Shul, Y. G. (2005). Support effects in catalytic wet oxidation of H2S to sulfur on supported iron oxide catalysts. Applied Catalysis A: General, 284, 1–4.

    Article  CAS  Google Scholar 

  • Lee, J. H., Kang, W. S., Najeeb, C. K., Choi, B. S., Choi, S. W., Lee, H. L., & Lee, S. S. (2013). A hydrogen gas sensor using single-walled carbon nanotube Langmuir-Blodgett films decorated with palladium nanoparticles. Sensors and Actuators B, 188, 169–175.

    Article  CAS  Google Scholar 

  • Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  • Levin, D. B., Zhu, H., Beland, M., Cicek, N., & Bruce, E. (2007). Holbein, Potential for hydrogen and methane production from biomass residues in Canada. Bioresource Technology, 98, 654–660.

    Article  CAS  Google Scholar 

  • Li, Z., Zhang, Q., Dan, M., Guo, Z., & Zhou, Y. (2017). A facile preparation route of Bi2S3 nanorod films for photocatalytic H2 production from H2S. Materials Letters, 201, 118–121.

    Article  CAS  Google Scholar 

  • Li, Y., Yu, S., Doronkin, D. E., Wei, S., Dan, M., Wu, F., Ye, L., et al. (2019). Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S. Journal of Catalysis, 373, 48–57.

    Article  Google Scholar 

  • Lin, P. C., Wang, P. Y., Li, Y. Y., Hua, C. C., & Lee, T. C. (2013). Enhanced photocatalytic hydrogen production over In-rich (Ag-In-Zn)S particles. Energy, 38, 8254–8262.

    CAS  Google Scholar 

  • Linkous, C. A., Huang, C., & Fowler, J. R. (2004). UV photochemical oxidation of aqueous sodium sulfide to produce hydrogen and sulfur. Journal of Photochemistry and Photobiology A, 168, 153.

    Article  CAS  Google Scholar 

  • Lu, G., & Li, S. (1992). Hydrogen production by H2S photodecomposition on ZnFe2O4 catalyst. International Journal of Hydrogen Energy, 17, 767–770.

    Article  CAS  Google Scholar 

  • Maeda, K., Teramura, K., Saito, N., Inone, Y., & Domen, K. (2006). Improvement of photocatalytic activity of (Ga1−xZnx) (N1−xOx) solid solution for over all water splitting by co-loading Cr and another transition metal. Journal of Catalysis, 243, 303–308.

    Article  CAS  Google Scholar 

  • Marbán, G., & Valdés-Solís, T. (2007). Towards the hydrogen economy. International Journal of Hydrogen Energy, 32, 1625–1637.

    Article  Google Scholar 

  • MD, 1999.

  • Metcalf and Eddy (2003) Wastewater Engineering: Treatment and Reuse, McGraw-Hill Education

  • Metkemeijer, R., & Achard, P. (1994). Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour. Journal of Power Sources, 49, 271–282.

    Article  CAS  Google Scholar 

  • Mohamed, S., & Naji, A. (2012). Chemical reactor network modeling of a microwave plasma thermal decomposition of H2S into hydrogen and sulfur. International Journal of Hydrogen Energy, 37, 10010–10019.

    Article  Google Scholar 

  • Morton, O. (2006). Solar energy: a new day dawning: silicon valley sunrise. Nature, 443, 19–22.

    Article  CAS  Google Scholar 

  • Naman, S. A. (1997). Photoproduction of hydrogen from hydrogen sulfide in vanadium sulfide colloidal suspension - Effect of temperature and pH. International Journal of Hydrogen Energy, 22, 783–789.

    Article  CAS  Google Scholar 

  • Naman, S. A., Aliwi, S. M., & Al-Emara, K. (1986). Hydrogen production from the splitting of H2S by visible light irradiation of vanadium sulfides dispersion loaded with RuO2. International Journal of Hydrogen Energy, 11, 33–38.

    Article  CAS  Google Scholar 

  • Nath, K., & Das, D. (2004). Biohydrogen production as a potential energy resource–Present state-of-art. Journal of Scientific and Industrial Research, 63, 729–738.

    CAS  Google Scholar 

  • Navakoteswara, R. V., Lakshmana, R. N., Mamatha, K. M., Ravi, P., Sathish, M., Kuruvill, K. M., et al. (2019). Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures. Applied Catalysis B: Environmental, 254, 174–218.

    Article  Google Scholar 

  • Navakoteswara Rao, V., Vijayarengan, P., Bhargav, U., & Venkatakrishnan, S. M. (2021). Gram-scale synthesis of ZnS/NiO core-shell hierarchical nanostructures and their enhanced H2 production in crude glycerol and sulfide wastewater. Environmental Research. https://doi.org/10.1016/j.envres.2021.111323

    Article  Google Scholar 

  • Nicholas, A. (2011). Melosh, Materials Science & Engineering, ‘New methods for solar energy conversion: Combining heat and light.’ Stanford University.

  • Norbeck, J. M., Heffel, J. W., Durbin, T. D., Tabbara, B., et al. (1996). Hydrogen Fuel for Surface Transportation (p. 548). Society of Automotive Engineers Inc.

  • Paramasivan, G., Katsumasa, A., Hideyuki, K., Tohru, S., Kunihiro, F., & Satoshi, K. (2013). Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2S + Na2SO3 solution. International Journal of Hydrogen Energy, 38, 8625–8630.

    Article  Google Scholar 

  • Paulmier, T., & Fulcheri, L. (2005). Use of non-thermal plasma for hydrocarbon reforming. Chemical Engineering Journal, 106, 59–71.

    Article  CAS  Google Scholar 

  • Pino, L., Recupero, V., Beninati, S., et al. (2002). Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for application in fuel cell electric vehicles. Applied Catalysis A: General, 225, 63–75.

    Article  CAS  Google Scholar 

  • Preethi, V., & Kanmani, S. (2013). Photocatalytic hydrogen production. Material Science in Semiconductor Processing, 16, 561–575.

    Article  CAS  Google Scholar 

  • Preethi, V., & Kanmani, S. (2014). Photocatalytic hydrogen recovery using Fe2O3 core shell nano particles. International Journal of Hydrogen Energy, 39, 1613–1622.

    Article  CAS  Google Scholar 

  • Preethi, V., & Kanmani, S. (2016). Performance of four various shapes of photocatalytic reactors with respect to hydrogen and sulphur recovery from sulphide containing waste streams. Journal of Cleaner Production, 133, 1218–1226.

    Article  CAS  Google Scholar 

  • Preethi, V., & Kanmani, S. (2017). Performance of gasphase reactors on hydrogen recovery from industrial waste gases. International Journal of Hydrogen Energy, 42, 8997–9002.

    Article  CAS  Google Scholar 

  • Preethi, V., & Kanmani, S. (2018). Performance of nano photocatalysts for the recovery of hydrogen and sulphur from sulphide containing wastewater. International Journal of Hydrogen Energy, 43, 3920–3934.

    Article  CAS  Google Scholar 

  • Priya, R., & Kanmani, S. (2009). Batch slurry photocatalytic reactors for the generation of hydrogen from sulfide and sulfite streams under solar irradiation. Solar Energy, 83, 1802–1805.

    Article  CAS  Google Scholar 

  • Priya, R., & Kanmani, S. (2011). Optimization of photocatalytic production of hydrogen from hydrogen sulfide in alkaline solution using response surface methodology. Desalination, 276, 222–227.

    Article  CAS  Google Scholar 

  • Reshetenko, T. V., Khairulin, S. R., Ismagilov, Z. R., & Kuznetsov, V. V. (2002). Study of the reaction of high-temperature H2S decomposition on metal oxides (γ-Al2O3, α-Fe2O3, V2O5). International Journal of Hydrogen Energy, 27, 387–394.

    Article  CAS  Google Scholar 

  • Sana, K., Besma, K., Maria, P., Fethi, Z., & Mohand, T. (2019). Production of hydrogen and hydrogen-rich syngas during thermal catalytic supported cracking of waste tyres in a bench-scale fixed bed reactor. International Journal of Hydrogen Energy, 44, 11289–11302.

    Article  Google Scholar 

  • Sankar, S., Preethi, V., Saravanan, S., Deuk, Y. K., & Sejoon, L. (2021). Excellent photocatalytic performances of Co3O4–AC nanocomposites for H2 production via wastewater splitting. Chemosphere, 286, 131823.

    Google Scholar 

  • Sekiguchi, H., & Mori, Y. (2003). Thin Solid Films Steam Plasma Reforming Using Microwave Discharge (pp. 44–48). Jeju Island, South Korea: Elsevier.

    Google Scholar 

  • Serkan, E., & Fikret, K. (2010). Hydrogen gas production from electrohydrolysis of industrial wastewater organics by using photovoltaic cells (PVC). International Journal of Hydrogen Energy, 35, 12761–12766.

    Article  Google Scholar 

  • Shaoqin, P., Yahui, H., & Yuexiang, L. (2013). Rare earth doped TiO2-CdS and TiO2-CdS composites with improvement of photocatalytic hydrogen evolution under visible light irradiation. Materials Science in Semiconductor Processing, 16, 62–69.

    Article  Google Scholar 

  • Shao-Wen, C., Yu-Peng, Y., Jun, F., Shahjamali, M. M., Boey, F. Y. C., Barber, J., Loo, S. C. J., & Xue, C. (2013). In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. International Journal of Hydrogen Energy, 38, 1258–1266.

    Article  Google Scholar 

  • Shaygan M, Ehyaei MA, Ahmadi A, El Haj Assad M, José Luz Silveira (2019) Energy, exergy, advanced exergy and economic analyses of hybrid polymer electrolyte membrane (PEM) fuel cell and photovoltaic cells to produce hydrogen and electricity, Journal of Cleaner Production, In press, accepted manuscript, Available online 28 June 2019

  • Shengsen, Z., Hongjuan, W., Mingsang, Y., Yue**, F., Hao, Y., & Feng, P. (2013). Cu(OH)2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production. International Journal of Hydrogen Energy, 38, 7241–7245.

    Article  Google Scholar 

  • Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86, 211–263.

    Article  CAS  Google Scholar 

  • Song, C., & Ma, X. (2003). New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis b: Environmental, 41, 207–238.

    Article  Google Scholar 

  • Sørensen, B. (2005). Hydrogen and Fuel Cells Emerging Technologies and Applications (p. 450). Elsevier Academic Press.

  • Sreenivasan, K. P., Rhett, J. P., & Ranjit, T. K. (2013). Modulating the textural properties and photocatalytic hydrogen production activity of TiO2 by high temperature supercritical drying. International Journal of Hydrogen Energy, 38, 10215–10225.

    Article  Google Scholar 

  • Steinfeld, A. (2005). Solar thermochemical production of hydrogen––a review. Solar Energy, 78, 603–615.

    Article  CAS  Google Scholar 

  • Tambwekar, S. V., & Subrahmanyam, M. (1997). Photocatalytic generation of hydrogen from hydrogen sulfide: an energy bargain. International Journal of Hydrogen Energy, 22, 959–965.

    Article  CAS  Google Scholar 

  • Tambwekar, S. V., Venugopal, D., & Subrahmanyam, M. (1999). Hydrogen production of (CdS-ZnS)-TiO2 supported photocatalytic system. International Journal of Hydrogen Energy, 24, 957–963.

    Article  CAS  Google Scholar 

  • TeGrotenhuis, W. E., King, D. L., Brooks, K. P., et al. (2002). In J. P. Baselt, U. Eul, & R. S. Wegeng (Eds.), Optimizing Microchannel Reactors by Trading-Off Equilibrium and Reaction Kinetics Through Temperature Management (p. 18). AICHE.

  • Turner, J. A. (2004). Sustainable hydrogen production. Science, 305, 972–974.

    Article  CAS  Google Scholar 

  • Turner, J., Sverdrup, G., Mann, M. K., Kroposki, B., Ghirardi, M., Evans, R. J., & Blake, D. (2008). Renewable hydrogen production. International Journal of Hydrogen Energy, 32, 379–407.

    CAS  Google Scholar 

  • Turner J, Deutsch T, Head J, Vallett P (2007) Photoelectrochemical water systems for H2 production. In: DOE Hydrogen Program Annual Merit Review, U.S. Department of Energy, Washington, DC, http://www.hydrogen.energy.gov/pdfs/review07/pd_10_turner.pdf.

  • Wang, L., Wang, W., Shang, M., Yin, W., Sun, S., & Zhang, L. (2009). Enhanced photocatalytic hydrogen evolution under visible light over Cd1-xZnxS solid solution with cubic zinc blend phase. International Journal of Hydrogen Energy, 35, 19–25.

    Article  Google Scholar 

  • Wani, A. H., Lau, A. K., & Branion, R. M. R. (1999). Biofiltration control of pul** odors – hydrogen sulfide: performance, macrokinetics and coexistence effects of organo-sulfur species. Journal of Chemical Technology Biotechnology, 74, 9–16.

    Article  CAS  Google Scholar 

  • Wei, C., Hanyang, G., Jian, Y., Wenfeng, S., Jiachun, S., & Yangzhou, S. (2013). Structure characteristics of CdS/H1.9K0.3La0.5Bi0.1Ta2O7 and photocatalytic activity for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 38, 10754–10760.

    Article  Google Scholar 

  • Wojcik, A., Middleton, H., Damopoulos, I., & Herle, J. V. (2003). Ammonia as a fuel in solid oxide fuel cells. Journal Power Sources, 118, 342–348.

    Article  CAS  Google Scholar 

  • **anghui, Z., Yuanchang, D., Zhaohui, Z., & Lie**, G. (2010). A simplified method for synthesis of band-structure-controlled (CuIn)xZn2(1–x)S2 solid solution photocatalysts with high activity of photocatalytic H2 evolution under visible-light irradiation. International Journal of Hydrogen Energy, 35, 3313–3321.

    Article  Google Scholar 

  • **e, Z., Yu, S., Fan, X. B., Wei, S., Yu, L., Zhong, Y., et al. (2021). Wavelength-sensitive photocatalytic H2 evolution from H2S splitting over g-C3N4 with S, N-codoped carbon dots as the photosensitizer. Journal of Energy Chemistry, 52, 234–242.

    Article  CAS  Google Scholar 

  • **xi, W., Maochang, L., Qingyun, C., Kai, Z., Jie, C., Meng, W., Penghui, G., & Lie**, G. (2013). Synthesis of CdS/CNTs photocatalysts and study of hydrogen production by photocatalytic water splitting. International Journal of Hydrogen Energy, 38, 13091–13096.

    Article  Google Scholar 

  • Yu, X. Z., Dong, Z. G., Ren, X. Q., et al. (2005). Ranliao Huaxue Xuebao. Journal of Fuel Chemistry and Technology, 33, 372–378.

    CAS  Google Scholar 

  • Yu-Peng, Y., Shao-Wen, C., Li-Sha, Y., Lin, X., & Can, X. (2013). NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation. International Journal of Hydrogen Energy, 38, 7218–7223.

    Article  Google Scholar 

  • Zaman, J., & Chakma, A. (1995). Production of hydrogen and sulfur from hydrogen sulfide. Fuel Processing Technology, 41, 159–198.

    Article  CAS  Google Scholar 

  • Zilong, Z., Bing, L., Dengwei, J., & Lie**, G. (2021). Hydrogen production versus photocatalyst dimension under concentrated solar light: a case over titanium dioxide. Solar Energy, 230, 538–548.

    Article  Google Scholar 

Download references

Acknowledgements

This research endeavour/work was supported and funded by the SERB Project “Recovery of Hydrogen from Industrial Waste Streams” under the Young Scientist Scheme (YSS/2015/001964).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Preethi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preethi, V. Solar hydrogen production in India. Environ Dev Sustain 25, 2105–2135 (2023). https://doi.org/10.1007/s10668-022-02157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02157-1

Keywords

Navigation