Log in

Recent trends in microalgal harvesting: an overview

  • S.I.: Biofuels
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In this modern era due to multidimensional problems associated with petrochemical fuels, the scientific community is showing a burgeoning interest in microalgae due to their potential applications which are indispensable for economic amelioration. Microalgae are a fundamental source of oils and various other biomolecules that can be used in the production of biofuels and various other value-added bioproducts. However, implication of microalgae-based biofuels is not economically viable due to various factors. One of these prime reasons is the cost associated with its harvesting. This review focuses on various harvesting techniques applied to microalgae in the last 2/3 decades, presenting the main benefits and drawbacks of each method to allow the selection of appropriate method(s) for economically harvesting microalgal biomass. According to this review, use of any single technique is not viable for harvesting microalgal biomass. However, kee** in view the morphological characteristics of the microalgae, growth density, utility purpose of the harvested biomass, harvesting scale and physico-chemical characteristics of the production medium, these techniques should be applied in suitable combinations to obtain fruitful results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., & Megharaj, M. (2018). Nutrient removal and biomass production: Advances in microalgal biotechnology for wastewater treatment. Critical Reviews in Biotechnology, 38, 1244–1260.

    Article  CAS  Google Scholar 

  • Abomohra, A. E. F., **, W., Sagar, V., & Ismail, G. A. (2018). Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery. Renewable Energy, 115, 880–886.

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Yasin, M. N. H., Derek, C. J. C., & Lim, J. K. (2011). Optimization of microalgae coagulation process using chitosan. Chemical Engineering Journal, 173, 879–882.

    Article  CAS  Google Scholar 

  • Al Hattab, M., Ghaly, A., & Hammouda, A. (2015). Microalgae harvesting methods for industrial production of biodiesel: Critical review and comparative analysis. Journal of Fundamentals of Renewable Energy and Applications, 5, 154.

    Article  CAS  Google Scholar 

  • Al-Gheethi, A. A. S., Noman, E. A., Mohamed, R. M. S. R., Apandi, N. M., Yaakob, M. A., Pahazri, F., & Kassim A. H. M. (2019). Recycle of greywater for microalgae biomass production. In R.R. Mohamed, A. Al-Gheethi, & A.M. Kassim (Eds.), Management of greywater in develo** countries. Water science and technology library (pp. 205−226). Springer.

  • Alkarawi, M. A. S., Caldwell, G. S., & Lee, J. G. M. (2018). Continuous harvesting of microalgae biomass using foam flotation. Algal Research, 36, 125–138.

    Article  Google Scholar 

  • Alrubaie, G., & Al-Shammari, R. H. (2018). Microalgae Chlorella vulgaris harvesting via co-palletization with filamentous fungus. Baghdad Science Journal, 15, 31–36.

    Article  Google Scholar 

  • Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88, 3402–3410.

    Article  CAS  Google Scholar 

  • Amer, L., Adhikari, B., & Pellegrino, J. (2011). Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technology, 102, 9350–9359.

    Article  CAS  Google Scholar 

  • Ansari, F. A., Gupta, S. K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634–643.

    Article  CAS  Google Scholar 

  • Atiku, H., Mohamed, R. M. S. R., Al-Gheethi, A. A., Wurochekkel, A. A., & Kassim, A. H. M. (2016). Harvesting of microalgae biomass from the Phycoremediation process of greywater. Environmental Science and Pollution Research, 23, 24624–24641.

    Article  CAS  Google Scholar 

  • Aulenbach, D. B., Shammas, N. K., Wang, L. K., & Marvin, R. C. (2010). Algae removal by flotation. In L. K. Wang, N. K. Shammas, W. A. Selke, & D. B. Aulenbach (Eds.), Flotation technology (pp. 363−399). Humana Press, Totowa.

  • Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500.

    Article  Google Scholar 

  • Besson, A., & Guiraud, P. (2013). High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina. Bioresource Technology, 147, 464–470.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Mathur, M., Kumar, P., & Malik, A. (2019). Potential role of N-acetyl glucosamine in Aspergillus fumigatus-assisted Chlorella pyrenoidosa harvesting. Biotechnology for Biofuels, 12, 178.

    Article  CAS  Google Scholar 

  • Bhuyar, P., Trejo, M., Dussadee, N., Unpaprom, Y., Ramaraj, R., & Whangchai, K. (2021). Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Science and Technology. Advance online publication. https://doi.org/10.2166/wst.2021.194

  • Blockx, J., Verfaillie, A., Thielemans, W., & Muylaert, K. (2018). Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sustainable Chemistry & Engineering, 6, 11273–11279.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (1992). Algal biotechnology products and processes-matching science and economics. Journal of Applied Phycology, 4, 267–279.

    Article  Google Scholar 

  • Branyikova, I., Prochazkova, G., Potocar, T., Jezkova, Z., & Branyik, T. (2018). Harvesting of microalgae by flocculation. Fermentation, 4, 93.

    Article  CAS  Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  CAS  Google Scholar 

  • Buelna, G., Bhattarai, K. K., Delanoue, J., & Taiganides, E. P. (1990). Evaluation of various flocculants for the recovery of algae biomass grown on pig-waste. Biological Wastes, 31, 211–222.

    Article  CAS  Google Scholar 

  • Cancela, A., Pérez, L., Febrero, A., Sánchez, A., Salgueiro, J. L., & Ortiz, L. (2019). Exploitation of Nannochloropsis gaditana biomass for biodiesel and pellet production. Renewable Energy, 133, 725–730.

    Article  CAS  Google Scholar 

  • Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 58.

    Article  CAS  Google Scholar 

  • Chang, Y. R., & Lee, D. J. (2012). Coagulation-membrane filtration of Chlorella vulgaris at different growth phases. Drying Technology, 30, 1317–1322.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102, 71–81.

    Article  CAS  Google Scholar 

  • Chen, J., Leng, L., Ye, C., Lu, Q., Addy, M., Wang, J., Liu, J., Chen, P., Ruan, R., & Zhou, W. A. (2018). Comparative study between fungal pellet-and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresource Technology, 259, 181–190.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Liu, J. C., & Ju, Y. H. (1998). Flotation removal of algae from water. Colloids and Surfaces B: Biointerfaces, 12, 49–55.

    Article  CAS  Google Scholar 

  • Cheng, Y. L., Juang, Y. C., Liao, G. Y., Tsai, P. W., Ho, S., Yeh, K., Chen, C., Chang, J., Liu, J., Chen, W., & Lee, D. (2011). Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technology, 102, 82–87.

    Article  CAS  Google Scholar 

  • Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J. S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332–344.

    Article  CAS  Google Scholar 

  • Choi, S., Lee, J., Kwon, D., & Cho, K. (2006). Settling characteristics of problem algae in the water treatment process. Water Science and Technology, 53, 113–119.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, 75–84.

    Article  CAS  Google Scholar 

  • Choy, S. Y., Prasad, K. M., Wu, T. Y., Raghunandan, M. E., Phang, S. M., Juan, J. C., & Ramanan, R. N. (2018). Separation of Chlorella biomass from culture medium by flocculation with rice starch. Algal Research, 30, 162–172.

    Article  Google Scholar 

  • Chua, E. T., Eltanahy, E., Jung, H., Uy, M., Thomas-Hall, S. R., & Schenk, P. M. (2019). Efficient harvesting of Nannochloropsis microalgae via optimized chitosan-mediated flocculation. Global Challenges, 3, 1–7.

    Article  Google Scholar 

  • Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R. A., & Steyer, J. P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102, 207–214.

    Article  CAS  Google Scholar 

  • Coward, T., Lee, J. G. M., & Caldwell, G. S. (2014). Harvesting microalgae by CTAB aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics. Biomass & Bioenergy, 67, 354–362.

    Article  CAS  Google Scholar 

  • D’Souza, F. M. L., Lecossois, D., Heasman, M. P., Diemar, J. A., Jackson, C. J., & Pendrey, R. C. (2000). Evaluation of centrifuged microalgae concentrates as diets for Penaeus monodon Fabricius larvae. Aquaculture Research, 31, 661–670.

    Google Scholar 

  • Dassey, A. J., & Theegala, C. S. (2013). Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresource Technology, 128, 241–245.

    Article  CAS  Google Scholar 

  • Debnath, S. (2019). Characterization of extracellular proteins to explore their role in bio-flocculation for harvesting algal biomass for wastewater treatment. In L. Sukla, E. Subudhi, & D. Pradhan (Eds.), The role of microalgae in wastewater treatment (pp. 229–266). Springer.

    Chapter  Google Scholar 

  • Deconinck, N., Muylaert, K., Ivens, W., & Vandamme, D. (2018). Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Research, 31, 469–477.

    Article  Google Scholar 

  • Deepanraj, B., Senthilkumar, N., & Ranjitha, J. (2021a). Effect of solid concentration on biogas production through anaerobic digestion of rapeseed oil cake. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 43, 1329–1336.

    Article  CAS  Google Scholar 

  • Deepanraj, B., Senthilkumar, N., Ranjitha, J., Jayaraj, S., & Ong, H. C. (2021b). Biogas from food waste through anaerobic digestion: Optimization with response surface methodology. Biomass Conversion and Biorefinery, 11, 227–239.

    Article  CAS  Google Scholar 

  • Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2017). Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 42, 26522–26528.

    Article  CAS  Google Scholar 

  • Edzwald, J. K. (2010). Dissolved air flotation and me. Water Research, 44, 2077–2106.

    Article  CAS  Google Scholar 

  • Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., Aradhyula, T. V., Velpuri, J., & Kuppam, C. (2018). Production of biofuels from microalgae-a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94, 49–68.

    Article  CAS  Google Scholar 

  • Eyley, S., Vandamme, D., Lama, S., den Mooter, V. G., Muylaert, K., & Thielemans, W. (2015). CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals. Nanoscale, 7, 14413–14421.

    Article  CAS  Google Scholar 

  • Fasaei, F., Bitter, J., Slegers, P., & Van-Boxtel, A. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347–362.

    Article  Google Scholar 

  • Formosa-Dague, C., Gernigon, V., Castelain, M., Daboussi, F., & Guiraud, P. (2018). Towards a better understanding of the flocculation/flotation mechanism of the marine microalgae Phaeodactylum tricornutum under increased pH using atomic force microscopy. Algal Research, 33, 369–378.

    Article  Google Scholar 

  • Fuad, N., Omar, R., Kamarudin, S., Harun, R., Idris, A., & Wan Azlina, W. A. K. J. (2018). Effective use of tannin based natural biopolymer, AFlok-BP1 to harvest marine microalgae Nannochloropsis sp. Journal of Environmental Chemical Engineering, 6, 4318–4328.

    Article  CAS  Google Scholar 

  • Gani, P., Sunar, M. N., Matias-Peralta, H., Latiff, A. A. A., & Fuzi, M. S. F. (2017). Growth of microalgae Botryococcus sp. in domestic wastewater and application of statistical analysis for the optimization of flocculation using alum and chitosan. Preparative Biochemistry and Biotechnology, 47, 333–341.

    Article  CAS  Google Scholar 

  • Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., & Du, M. (2010). Electro-coagulation–flotation process for algae removal. Journal of Hazardous Materials, 177, 336–343.

    Article  CAS  Google Scholar 

  • Garg, S., Li, Y., Wang, L. G., & Schenk, P. M. (2012). Flotation of marine microalgae: Effect of algal hydrophobicity. Bioresource Technology, 121, 471–474.

    Article  CAS  Google Scholar 

  • Garg, S., Wang, L. G., & Schenk, P. M. (2014). Effective harvesting of low surface-hydrophobicity microalgae by froth flotation. Bioresource Technology, 159, 437–441.

    Article  CAS  Google Scholar 

  • Garzon-Sanabria, A. J., Davis, R. T., & Nikolov, Z. L. (2012). Harvesting Nannochloris oculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresource Technology, 118, 418–424.

    Article  CAS  Google Scholar 

  • Geada, P., Rodrigues, R., Loureiro, L., Pereira, R., Fernandes, B., Teixeira, J. A., Vasconcelos, V., & Vicente, A. A. (2018). Electrotechnologies applied to microalgal biotechnology-Applications, techniques and future trends. Renewable and Sustainable Energy Reviews, 94, 656–668.

    Article  Google Scholar 

  • Ghernaout, D. (2019). Electrocoagulation process for microalgal biotechnology-a review. Applied Engineering, 3, 85–94.

    Google Scholar 

  • Goh, A. (1984). Production of microalgae using pig waste as a substrate. University of Colorado, Boulder, USA.

    Google Scholar 

  • González-Fernández, C., & Ballesteros, M. (2013). Microalgae autoflocculation: An alternative to high-energy consuming harvesting methods. Journal of Applied Physiology, 25, 991–999.

    Google Scholar 

  • Gopidesi, R. K., Premkartikumar, Sr., & Dhana Raju, V. (2021). Mitigation of harmful exhaust pollutants of DI diesel engine using emulsified fuel and hythane gas in a dual-fuel mode. Recovery, Utilization, and Environmental Effects. Advance online publication. https://doi.org/10.1080/15567036.2020.1861131

    Book  Google Scholar 

  • Goswami, G., Kumar, R., Sinha, A., Maiti, S. K., Dutta, B. C., Singh, H., & Das, D. (2019). A low cost and scalable process for harvesting microalgae using commercial-grade flocculant. RSC Advances, 67, 39011–39024.

    Article  Google Scholar 

  • Granados, M., Acién, F., Gomez, C., Fernandez-Sevilla, J., & Grima, E. M. (2012). Evaluation of flocculants for the recovery of freshwater microalgae. Bioresource Technology, 118, 102–110.

    Article  CAS  Google Scholar 

  • Green, F. B. (2008). Harvesting microalgae: challenges and achievements. Microalgae Biomass Summit, Algal Biomass Organization, Seattle, Washington, USA.

  • Greenwell, H. C., Laurens, L., Shields, R., Lovitt, R., & Flynn, K. (2009). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726.

    Article  CAS  Google Scholar 

  • Grima, E. M., Belarbi, E. H., Fernández, F. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.

    Article  Google Scholar 

  • Gu, Q., **, W. B., Chen, Y. Q., Guo, S. D., & Wan, C. F. (2017). Highly efficient bioflocculation of microalgae using Mucor circinelloides. Huan**g Kexue, 38, 688–696.

    Google Scholar 

  • Guiqing, G., Haiyan, J., & Duwang, L. (2011). Pilot-scale study on treatment of high-algae and low-turbidity source water by air flotation in South China. Advanced Materials Research, 60, 2686–2690.

    Google Scholar 

  • Guo, H., Hong, C., Zheng, B., Lu, F., Jiang, D., & Qin, W. (2017). Bioflocculants’ production in a biomass-degrading bacterium using untreated corn stover as carbon source and use of bioflocculants for microalgae harvest. Biotechnology for Biofuels, 10, 306.

    Article  CAS  Google Scholar 

  • Hamid, S. H., Lananan, F., Khatoon, H., Jusoh, A., & Endut, A. (2016). A study of coagulating protein of Moringa oleifera in microalgae bio-flocculation. International Biodeterioration & Biodegradation, 113, 310–317.

    Article  CAS  Google Scholar 

  • Hanotu, J., Bandulasena, H. H., & Zimmerman, W. B. (2012). Microflotation performance for algal separation. Biotechnology and Bioengineering, 109, 1663–1673.

    Article  CAS  Google Scholar 

  • Hanotu, J., Ying, K., Shada, O. I., Bandulasena, H., & Zimmerman, W. B. (2013). Microalgae recovery by microflotation for biofuel production using metallic coagulants. Biofuels, 4, 363–369.

    Article  Google Scholar 

  • Harith, Z. T., Yusoff, F. M., Mohamed, M. S., Shariff, M., Din, M., & Ariff, A. B. (2009). Effect of different flocculants on the flocculation performance of flocculation performance of microalgae, Chaetoceros calcitrans’ cells. African Journal of Biotechnology, 8, 5971–5978.

    Article  CAS  Google Scholar 

  • Heasman, M., Diemar, J., & O’connor W., Sushames T., & Foulkes L. (2000). Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs–a summary. Aquaculture Research, 31, 637–659.

    Google Scholar 

  • Henderson, R. K., Parsons, S. A., & Jefferson, B. (2010a). The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Research, 44, 3617–3624.

    Article  CAS  Google Scholar 

  • Henderson, R. K., Parsons, S. A., & Jefferson, B. (2008a). Successful removal of algae through the control of zeta potential. Separation Science and Technology, 43, 1653–1666.

    Article  CAS  Google Scholar 

  • Henderson, R. K., Parsons, S. A., & Jefferson, B. (2008b). Surfactants as bubble surface modifiers in the flotation of algae: Dissolved air flotation that utilizes a chemically modified bubble surface. Environmental Science & Technology, 42, 4883–4888.

    Article  CAS  Google Scholar 

  • Henderson, R. K., Parsons, S. A., & Jefferson, B. (2009). The potential for using bubble modification chemicals in dissolved air flotation for algae removal. Separation Science and Technology, 44, 1923–1940.

    Article  CAS  Google Scholar 

  • Henderson, R. K., Parsons, S. A., & Jefferson, B. (2010b). Polymers as bubble surface modifiers in the flotation of algae. Environmental Technology, 31, 781–790.

    Article  CAS  Google Scholar 

  • Hendricks, D. (2016). Fundamentals of water treatment unit processes: Physical, chemical, and biological. CRC Press.

    Book  Google Scholar 

  • Huang, Y., Wei, C., Liao, Q., **a, A., Zhu, X., & Zhu, X. (2019a). Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH. Bioresource Technology, 276, 133–139.

    Article  CAS  Google Scholar 

  • Huang, Z., Cheng, C., Liu, Z., Luo, W., Zhong, H., He, G., Liang, C., Li, L., Deng, L., & Fu, W. (2019b). Gemini surfactant: A novel flotation collector for harvesting of microalgae by froth flotation. Bioresource Technology, 275, 421–424.

    Article  CAS  Google Scholar 

  • Jameson, G. J. (1999). Hydrophobicity and floc density in induced-air flotation for water treatment. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 151, 269–281.

    Article  CAS  Google Scholar 

  • Japar, A. S., Azis, N. M., Takriff, M. S., & Yasin, M. H. M. (2017). Application of different techniques to harvest microalgae. Transactions on Science and Technology, 4, 98–108.

    Google Scholar 

  • Jarvis, P., Buckingham, P., Holden, B., & Jefferson, B. (2009). Low energy ballasted flotation. Water Research, 43, 3427–3434.

    Article  CAS  Google Scholar 

  • Jerney J., & Spilling K. (2018). Large scale cultivation of microalgae: open and closed systems. In K. Spilling (Ed.), Biofuels from algae. Methods in molecular biology (pp. 1−8). Humana, New York.

  • Jiang, J., **, W., Tu, R., Han, S., Ji, Y., & Zhou, X. (2020). Harvesting of microalgae Chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi. Advance online publication. https://doi.org/10.1007/s12649-020-00979-6

    Book  Google Scholar 

  • Kadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., & Lee, K. T. (2018). Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 171, 1416–1429.

    Article  CAS  Google Scholar 

  • Kawaroe, M., Prartono, T., Sunuddin, A., & Saputra, D. (2016). Marine microalgae Tetraselmis suecica as flocculant agent of bio-flocculation method. HAYATI Journal of Biosciences, 23, 62–66.

    Article  Google Scholar 

  • Kim, D. G., La, H. J., Ahn, C. Y., Park, Y. H., & Oh, H. M. (2011). Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresource Technology, 102, 316–318.

    CAS  Google Scholar 

  • Kirnev, P. C. S., de Carvalho, J. C., Miyaoka, J. T., Cartas, L. C., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Harvesting Neochloris oleoabundans using commercial organic flocculants. Journal of Applied Physiology, 30, 2317–2324.

    CAS  Google Scholar 

  • Knuckey, R. M., Brown, M. R., Robert, R., & Frampton, D. M. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering, 35, 300–313.

    Article  Google Scholar 

  • Kovalcik, D. J. (2013). Algal harvesting for biodiesel production: comparing centrifugation and electrocoagulation. PhD thesis. College Station: Texas A & M University.

  • Krishnamoorthy, N., Unpaprom, Y., Ramaraj, R., Maniam, G.P., Govindan, N., Arunachalam, T., & Paramasivan, B. (2021). Recent advances and future prospects of electrochemical processes for microalgae harvesting. Journal of Environmental Chemical Engineering, 9, 105875.

  • Kumar, N., Banerjee, C., Kumar, N., & Jagadevan, S. (2019). A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresource Technology, 271, 383–390.

    Article  CAS  Google Scholar 

  • Kumar, P., Kumar, D., Nehra, P., & Sharma, P. (2018). Green algae biomass cultivation, harvesting and genetic modifications for enhanced cellular lipids. In J. Patra, G. Das, & H. S. Shin (Eds.), Microbial biotechnology (pp. 119–140). Springer.

    Chapter  Google Scholar 

  • Kurniawati, A. H., Ismadji, S., & Liu, J. (2014). Microalgae harvesting by flotation using natural saponin and chitosan. Bioresource Technology, 166, 429–434.

    Article  CAS  Google Scholar 

  • Kwak, D. H., & Kim, M. S. (2015). Flotation of algae for water reuse and biomass production: Role of zeta potential and surfactant to separate algal particles. Water Science and Technology, 72, 762–769.

    Article  CAS  Google Scholar 

  • Kwon, H., Lu, M., Lee, E. Y., & Lee, J. (2014). Harvesting of microalgae using flocculation combined with dissolved air flotation. Biotechnology and Bioprocess Engineering, 19, 143–149.

    Article  CAS  Google Scholar 

  • Laraib, N., Hussain, A., Javid, A., Rehman, M. H., Bukhari, S. M., Rashid, M., & Ali, W. (2020). Recent advancements in microalgal-induced remediation of wastewaters. In P. Chowdhary, A. Raj, D. Verma, & Y. Akhter (Eds.), Microorganisms for sustainable environment and health (pp. 205–217). Elsevier.

    Chapter  Google Scholar 

  • Laraib, N., Hussain, A., Javid, A., Bukhari, S. M., Ali, W., Manzoor, M., & Jabeen, F. (2021a). Mixotrophic cultivation of Scenedesmus dimorphus for enhancing biomass productivity and lipid yield. Iranian Journal of Science and Technology Transactions A: Science, 45, 397–403.

    Article  Google Scholar 

  • Laraib, N., Manzoor, M., Javid, A., Jabeen, F., Bukhari, SM., Ali, W., & Hussain, A. (2021b). Mixotrophic cultivation of Chlorella vulgaris in sugarcane molasses preceding nitrogen starvation: biomass productivity, lipid content and fatty acid analyses. Environmental Progress and Sustainable Energy, 40, e13625.

  • Laval, A. (2010). High-capacity disc stack centrifuge for fats and oil refining. Retrieved August 23, 2010 from http://www.alfalaval.com/solution-fnder/products/pxseries/pages/documentation.aspx.

  • Lavoie, A., & de la Note, J. (1983). Harvesting microalgae with chitosan. Journal of the World Mariculture Society, 14, 685–694.

    Article  CAS  Google Scholar 

  • Lei, X., Chen, Y., Shao, Z., Chen, Z., Li, Y., Zhu, H., Zhang, J., Zheng, W., & Zheng, T. (2015). Effective harvesting of the microalgae Chlorella vulgaris via flocculation–flotation with bioflocculant. Bioresource Technology, 198, 922–925.

    Article  CAS  Google Scholar 

  • Leite L.S., Hoffmann M.T., & Daniel L.A. (2019). Coagulation and dissolved air flotation as a harvesting method for microalgae cultivated in wastewater. Journal of Water Process Engineering, 32, 100947.

  • Li, Y., Xu, Y., Song, R., Tian, C., Liu, L., Zheng T., & Wang H. (2018). Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomyces sp. hsn06 on microalgae biomass. BMC Biotechnology, 18, 58.

  • Liu, C., Hao, Y., Jiang, J., & Liu, W. (2017). Valorization of untreated rice bran towards bioflocculant using a lignocellulose-degrading strain and its use in microalgal biomass harvest. Biotechnology for Biofuels, 10, 90.

    Article  CAS  Google Scholar 

  • Liu, J. C., Chen, Y. M., & Ju, Y. H. (1999). Separation of algal cells from water by column flotation. Separation Science and Technology, 34, 2259–2272.

    Article  CAS  Google Scholar 

  • Liu, S., Hajar, H. A. A., Riefler, G., & Stuart, B. J. (2018). Investigation of electrolytic flocculation for microalga Scenedesmus sp. using aluminum and graphite electrodes. RSC Advances, 8, 38808–38817.

    Article  CAS  Google Scholar 

  • Lu, H., Dong, S., Zhang, G., Han, T., Zhang, Y., & Li, B. (2019). Enhancing the auto-flocculation of photosynthetic bacteria to realize biomass recovery in brewery wastewater treatment. Environmental Technology, 40, 2147–2156.

    Article  CAS  Google Scholar 

  • Luo, S., Wu, X., Jiang, H., Yu, M., Liu, Y., Min, A., & Ruan, R. (2019). Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation. Bioresource Technology, 282, 325–330.

    Article  CAS  Google Scholar 

  • Madkour, A., Ibrahim, H., El-Sayed, W., & El-Moselhy, K. (2018). Bioflocculation technique for microalgal harvesting and wastewater nutrient recovery. Iranian Journal of Fisheries Sciences, 10, 1–16.

    Google Scholar 

  • Mannweiler, K., & Hoare, M. (1992). The scale-down of an industrial disk stack centrifuge. Bioprocess Engineering, 8, 19–25.

    Article  CAS  Google Scholar 

  • Mantzorou, A., & Ververidis, F. (2018). Microalgal biofilms: A further step over current microalgal cultivation techniques. Science of the Total Environment, 651, 3187–3201.

    Article  CAS  Google Scholar 

  • Marrone, B. L., Lacey, R. E., Anderson, D. B., Bonner, J., Coons, J., Dale, T., Downes, C. M., Fernando, S., Fuller, C., & Goodall, B. (2018). Review of the harvesting and extraction program within the national alliance for advanced biofuels and bioproducts. Algal Research, 33, 470–485.

    Article  Google Scholar 

  • Maruyama, H., Seki, H., & Suzuki, A. (2009). Flotation of blue-green algae using methylated egg ovalbumin. Chemical Engineering Journal, 155, 49–54.

    Article  CAS  Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  • Mathimani, T., & Mallick, N. (2018). A comprehensive review on harvesting of microalgae for biodiesel-key challenges and future directions. Renewable and Sustainable Energy Reviews, 91, 1103–1120.

    Article  CAS  Google Scholar 

  • Milledge, J. J., & Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio/technology, 12, 165–178.

    Article  Google Scholar 

  • Mohn, F. H. (1980). Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In G. Schelef & C. J. Soeder (Eds.), Algae biomass (pp. 547–571). Elsevier.

    Google Scholar 

  • Molina-Miras, A., López-Rosales, L., Cerón-García, M.C., Sánchez-Mirón, A., García-Camacho F., Contreras-Gómez A., & Molina-Grima E. (2019). A new approach to finding optimal centrifugation conditions for shear-sensitive microalgae. Algal Research, 44, 101677.

  • Mubarak, M., Shaija, A., & Suchithra, T. V. (2020). Evaluation of ferric chloride and electroflocculation of Chlorella pyrenoidosa and reuse of the culture medium for subsequent cultures. Journal of Environmental Chemical Engineering, 8, 103612.

  • Mukhopadhyay, G., Khanam, J., & Nanda, A. (2010). Protein removal from whey waste by foam fractionation in a batch process. Separation Science and Technology, 45, 1331–1339.

    Article  CAS  Google Scholar 

  • Nasir, N.M., Yunos, F.H.M., Jusoh, H.H.W., Mohammad, A., Lam, S.S., & Jusoh, A. (2019). Subtopic: Advances in water and wastewater treatment harvesting of Chlorella sp. microalgae using Aspergillus niger as bio-flocculant for aquaculture wastewater treatment. Journal of Environmental Management, 249, 109373.

  • Nayak, M., Rashid, N., Suh, W. I., Lee, B., & Chang, Y. K. (2019). Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability. Renewable Energy, 136, 819–827.

    Article  CAS  Google Scholar 

  • Ndikubwimana, T., Chang, J., **ao, Z., Shao, W., Zeng, X., Ng, I. S., & Lu, Y. (2016). Flotation: A promising microalgae harvesting and dewatering technology for biofuels production. Biotechnology Journal, 11, 315–326.

    Article  CAS  Google Scholar 

  • Ndikubwimana, T., Zeng, X., Liu, Y., Chang, J. S., & Lu, Y. (2014). Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Research, 6, 186–193.

    Article  Google Scholar 

  • Neis, U.B. (2002). Ultrasonic disinfection of wastewater effluents for high quality reuse. IWA Regional symposium on water recycling in Mediterranean region, Iraklio, Greece.

  • Nguyen, L. N., Labeeuw, L., Commault, A. S., Emmerton, B., Ralph, P.J., Johir, M.A., Guo, W., Ngo, H. H., & Nghiem, L. D. (2019a). Validation of a cationic polyacrylamide flocculant for the harvesting fresh and seawater microalgal biomass. Environmental Technology & Innovation, 16, 100466.

  • Nguyen, T. D. P., Le, T. V. A., Show, P. L., Nguyen, T. T., Tran, M. H., Tran, T. N. T., & Lee, S. Y. (2019b). Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresource Technology, 272, 34–39.

    Article  CAS  Google Scholar 

  • Odjadjare, E. C., Mutanda, T., & Olaniran, A. O. (2017). Potential biotechnological application of microalgae: A critical review. Critical Reviews in Biotechnology, 37, 37–52.

    Article  CAS  Google Scholar 

  • Oh, H. M., Lee, S. J., Park, M. H., Kim, H. S., Kim, H. C., Yoon, J. H., Kwon, G. S., & Yoon, B. D. (2001). Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnology Letters, 23, 1229–1234.

    Article  CAS  Google Scholar 

  • Packer, M. (2009). Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, 37, 3428–3437.

    Article  Google Scholar 

  • Pandey, A., Pathak, V. V., Kothari, R., Black, P. N., & Tyagi, V. (2019). Experimental studies on zeta potential of flocculants for harvesting of algae. Journal of Environmental Management, 231, 562–569.

    Article  CAS  Google Scholar 

  • Pandhal, J., Choon, W., Kapoore, R., Russo, D., Hanotu, J., Wilson, I., Desai, P., Bailey, M., Zimmerman, W., & Ferguson, A. (2018). Harvesting environmental microalgal blooms for remediation and resource recovery: A laboratory scale investigation with economic and microbial community impact assessment. Biology, 7, 4.

    Article  CAS  Google Scholar 

  • Papazi, A., Makridis, P., & Divanach, P. (2010). Harvesting Chlorella minutissima using cell coagulants. Journal of Applied Phycology, 22, 349–355.

    Article  CAS  Google Scholar 

  • Peperzak, L., Colijn, F., Koeman, R., Gieskes, W., & Joordens, J. (2003). Phytoplankton sinking rates in the Rhine region of freshwater influence. Journal of Plankton Research, 25, 365–383.

    Article  Google Scholar 

  • Pérez, L., Salgueiro, J. L., Maceiras, R., Cancela, A., & Sánchez, Á. (2016). Influence of a combination of flocculants on harvesting of Chaetoceros gracilis marine microalgae. Chemical Engineering & Technology, 39, 1685–1692.

    Article  CAS  Google Scholar 

  • Petrusevski, B., Bolier, G., Van Breemen, A. N., & Alaerts, G. J. (1995). Tangential flow filtration: A method to concentrate freshwater algae. Water Research, 29, 1419–1424.

    Article  CAS  Google Scholar 

  • Phoochinda, W., & White, D. A. (2003). Removal of algae using froth flotation. Environmental Technology, 24, 87–96.

    Article  CAS  Google Scholar 

  • Phoochinda, W., White, D. A., & Briscoe, B. J. (2005). Comparison between the removal of live and dead algae using froth flotation. Journal of Water Supply: Research and Technology, 54, 115–125.

    Article  Google Scholar 

  • Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, 17–25.

    Article  CAS  Google Scholar 

  • Poelman, E., de Pauw, N., & Jeurissen, B. (1997). Potential of electrolytic flocculation for recovery of micro-algae. Resources, Conservation and Recycling, 19, 1–10.

    Article  Google Scholar 

  • Pragya, N., Pandey, K. K., & Sahoo, P. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews, 24, 159–171.

    Article  CAS  Google Scholar 

  • Prajapati, S. K., Bhattacharya, A., Kumar, P., Malik, A., & Vijay, V. K. (2016). A method for simultaneous bioflocculation and pretreatment of algal biomass targeting improved methane production. Green Chemistry, 18, 5230–5238.

    Article  CAS  Google Scholar 

  • Pugazhendhi, A., Shobana, S., Bakonyi, P., Nemestóthy, N., **a, A., & Kumar, G. (2019). A review on chemical mechanism of microalgae flocculation via polymers. Biotechnology Reports, 21, e00302.

  • Pushparaj, B., Pelosi, E., Torzillo, G., & Materassi, R. (1993). Microbial biomass recovery using a synthetic cationic polymer. Bioresource Technology, 43, 59–62.

    Article  CAS  Google Scholar 

  • Rakesh, S., Saxena, S., Dhar, D. W., Prasanna, R., & Saxena, A. K. (2014). Comparative evaluation of inorganic and organic amendments for their flocculation efficiency of selected microalgae. Journal of Applied Phycology, 26, 399–406.

    Article  CAS  Google Scholar 

  • Raman, L. A., Deepanraj, B., Rajakumar, S., & Sivasubramanian, V. (2019). Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel, 246, 69–74.

    Article  CAS  Google Scholar 

  • Ranjitha, J., Gokul, R. S., Vijayalakshmi, S., & Deepanraj, B. (2020). Production, optimisation and engine characteristics of beef tallow biodiesel rendered from leather fleshing and slaughterhouse wastes. Biomass Conversion and Biorefinery, 10, 675–688.

    Article  CAS  Google Scholar 

  • Rashid, N., Nayak, M., Suh, W. I., Lee, B., & Chang, Y. K. (2019). Efficient microalgae removal from aqueous medium through auto-flocculation: Investigating growth-dependent role of organic matter. Environmental Science and Pollution Research, 26, 27396–27406.

    Article  CAS  Google Scholar 

  • Rashid, N., Rehman, M. S. U., & Han, J. I. (2013). Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris. Chemical Engineering Journal, 226, 238–242.

    Article  CAS  Google Scholar 

  • Ray, M., Kumar, N., Kumar, V., Negi, S., & Banerjee, C. (2019). Microalgae: A way forward approach towards wastewater treatment and bio-fuel production. In P. Shukla (Ed.), Applied microbiology and bioengineering (pp. 229–243). Academic Press.

    Chapter  Google Scholar 

  • Rees, F., Leenheer, J., & Ranville, J. (1991). Use of a single-bowl continuous-flow centrifuge for dewatering suspended sediments: Effect on sediment physical and chemical characteristics. Hydrological Processes, 5, 201–214.

    Article  Google Scholar 

  • Richardson, J. W., Johnson, M. D., Lacey, R., Oyler, J., & Capareda, S. (2014). Harvesting and extraction technology contributions to algae biofuels economic viability. Algal Research, 5, 70–78.

    Article  Google Scholar 

  • Rinanti, A., & Purwadi, R. (2018). Bioflocculation activity in harvesting system: A biotechnology approach for microalgae biomass. Aceh International Journal of Science and Technology, 7, 69–76.

    Article  Google Scholar 

  • Rossi, N., Jaouen, O., Legentilhomme, P., & Petit, I. (2004). Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes. Food and Bioproducts Processing, 82, 244–250.

    Article  Google Scholar 

  • Rubio, J., Souza, M., & Smith, R. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15, 139–155.

    Article  CAS  Google Scholar 

  • Rwehumbiza, V. M., Harrison, R., & Thomsen, L. (2012). Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chemical Engineering Journal, 200, 168–175.

    Article  CAS  Google Scholar 

  • Salim, S., Vermue, M. H., & Wijffels, R. H. (2012). Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology, 118, 49–55.

    Article  CAS  Google Scholar 

  • Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.

    Article  Google Scholar 

  • Sharma, K. K., Garg, S., Li, Y., Malekizadeh, A., & Schenk, P. M. (2013). Critical analysis of current microalgae dewatering techniques. Biofuels, 4, 397–407.

    Article  CAS  Google Scholar 

  • Shen, Y., Yuan, W., Pei, Z., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52, 1275–1287.

    Article  Google Scholar 

  • Shin, Y. S., Choi, H. I., Choi, J. W., Lee, J. S., Sung, Y. J., & Sim, S. J. (2018). Multilateral approach on enhancing economic viability of lipid production from microalgae: A review. Bioresource Technology, 258, 335–344.

    Article  CAS  Google Scholar 

  • Sim, T., Goh, A., & Becker, E. (1988). Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae. Biomass, 16, 51–62.

    Article  Google Scholar 

  • Singh, G., & Patidar, S. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499–508.

    Article  Google Scholar 

  • Şirin, S., Trobajo, R., Ibanez, C., & Salvadó, J. (2012). Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. Journal of Applied Phycology, 24, 1067–1080.

    Article  CAS  Google Scholar 

  • Spellman, F. R. (2008). Handbook of water and wastewater treatment plant operations. CRC Press.

    Book  Google Scholar 

  • Srivastava, A., Seo, S. H., Ko, S. R., Ahn, C. Y., & Oh, H. M. (2018). Bioflocculation in natural and engineered systems: Current perspectives. Critical Reviews in Biotechnology, 38, 1176–1194.

    Article  CAS  Google Scholar 

  • Surendhiran, D., & Vijay, M. (2014). Exploration on bioflocculation of Nannochloropsis oculata using response surface methodology for biodiesel production. The Scientific World Journal, 2014, 202659.

  • Sydney, E.B., Sydney, A.C.N., de-Carvalho, J.C., & Soccol, C.R. (2019). Microalgal strain selection for biofuel production. In A. Pandey, J.-S Chang, C.R. Soccol, D.-J. Lee, & Y Chisti (Eds.), Biofuels from algae (2nd ed., pp. 51−66). Elsevier.

  • ’t Lam G.P., Vermuë M.H., Olivieri G., van den Broek L.A.M., Barbosa M.J., Eppink M.H.M., Wijffels R.H., & Kleinegris D.M.M. (2014). Cationic polymers for successful flocculation of marine microalgae. Bioresource Technology, 169, 804–807.

    Article  CAS  Google Scholar 

  • Tan, X. B., Lam, M. K., Uemura, Y., Lim, J. W., Wong, C. Y., & Lee, K. T. (2018). Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chinese Journal of Chemical Engineering, 26, 17–30.

    Article  CAS  Google Scholar 

  • Toh, P. Y., Azenan, N. F., Wong, L., Ng, Y. S., Chng, L. M., Lim, J., & Chan, D. J. C. (2018). The role of cationic coagulant-to-cell interaction in dictating the flocculation-aided sedimentation of freshwater microalgae. Arabian Journal for Science and Engineering, 43, 2217–2225.

    Article  CAS  Google Scholar 

  • Tsai, D. D., Chen, P. H., & Ramaraj, R. (2017). The potential of carbon dioxide capture and sequestration with algae. Ecological Engineering, 98, 17–23.

    Article  Google Scholar 

  • Udom, I., Zaribaf, B. H., Halfhide, T., Gillie, B., Dalrymple, O., Zhang, Q., & Ergas, S. J. (2013). Harvesting microalgae grown on wastewater. Bioresource Technology, 139, 101–106.

    Article  CAS  Google Scholar 

  • Uduman, N., Qi Y., Danquah, M.K., Forde, G.M., & Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2, 012701.

  • Van Den Hende, S., Vervaeren, H., Desmet, S., & Boon, N. (2011). Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnology, 29, 23–31.

    Article  CAS  Google Scholar 

  • Vandamme, D., Foubert, I., Meesschaert, B., & Muylaert, K. (2010). Flocculation of microalgae using cationic starch. Journal of Applied Phycology, 22, 525–530.

    Article  Google Scholar 

  • Vandamme, D., Pohl, P. I., Beuckels, A., Foubert, I., Brady, P. V., Hewson, J. C., & Muylaert, K. (2015). Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite. Bioresource Technology, 196, 656–661.

    Article  CAS  Google Scholar 

  • Vandamme, D., Pontes, S. C. V., Goiris, K., Foubert, I., Pinoy, L. J. J., & Muylaert, K. (2011). Evaluation of electro-coagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering, 108, 2320–2329.

    Article  CAS  Google Scholar 

  • Vasudevan, V., Stratton, R. W., Pearlson, M. N., Jersey, G. R., Beyene, A. G., Weissmen, J. C., Rubino, M., & Hileman, J. I. (2012). Environmental performance of algal biofuel technology options. Environmental Science and Technology, 46, 2451–2459.

    Article  CAS  Google Scholar 

  • Vergini, S., Aravantinou, A. F., & Manariotis, I. D. (2016). Harvesting of freshwater and marine microalgae by common flocculants and magnetic microparticles. Journal of Applied Phycology, 28, 1041–1049.

    Article  CAS  Google Scholar 

  • Vermuë, M., Eppink, M., Wijffels, R., & Van-Den, B. C. (2018). Multi-product microalgae biorefineries: From concept towards reality. Trends in Biotechnology, 36, 216–227.

    Article  CAS  Google Scholar 

  • Viruela, A., Murgui, M., Gómez-Gil, T., Durán, F., Robles, Á., Ruano, M. V., Ferrer, J., & Seco, A. (2016). Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 218, 447–454.

    Article  CAS  Google Scholar 

  • Wan, C., Zhao, X. Q., Guo, S. L., Alam, A. M., & Bai, F. W. (2013). Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresource Technology, 135, 207–212.

    Article  CAS  Google Scholar 

  • Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.

    Article  CAS  Google Scholar 

  • Wang, S., Yerkebulan, M., Abomohra, A.E., El-Khodary, S., & Wang, Q. (2019). Microalgae harvest influences the energy recovery: a case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresource Technology, 286, 121371.

  • Wang, X., Lin, L., Lu, H., Liu, Z., Duan, N., Dong, T., **ao, H., Li, B., & Xu, P. (2018a). Microalgae cultivation and culture medium recycling by a two-stage cultivation system. Frontiers of Environmental Science and Engineering, 12, 14.

    Article  CAS  Google Scholar 

  • Wang, Y. S., Tong, Z. H., Wang, L. F., Sheng, G. P., & Yu, H. Q. (2018b). Effective flocculation of Microcystis aeruginosa with simultaneous nutrient precipitation from hydrolyzed human urine. Chemosphere, 193, 472–478.

    Article  CAS  Google Scholar 

  • Weschler, M. K., Barr, W. J., Harper, W. F., & Landis, A. E. (2014). Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock. Bioresource Technology, 153, 108–115.

    Article  CAS  Google Scholar 

  • Whangchai, K., Souvannasouk, V., Bhuyar, P., Ramaraj, R., & Unpaprom, Y. (2021). Biomass generation and biodiesel production from macroalgae grown in the irrigation canal wastewater. Water Science and Technology. Advance online publication. https://doi.org/10.2166/wst.2021.195

  • Wiley, P. E., Brenneman, K. J., & Jacobson, A. E. (2009). Improved algal harvesting using suspended air flotation. Water Environment Research, 81, 702–808.

    Article  CAS  Google Scholar 

  • Wu, S., **e, X., Huan, L., Zheng, Z., Zhao, P., Kuang, J., Liu, X., & Wang, G. (2016). Selection of optimal flocculant for effective harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana. Journal of Applied Phycology, 28, 1579–1588.

    Article  CAS  Google Scholar 

  • **a, L., Li, Y., Huang, R., & Song, S. (2017). Effective harvesting of microalgae by coagulation–flotation. Royal Society Open Science, 4, 170867.

  • **a, X., Lan, S., Li, X., **e, Y., Liang, Y., Yan, P., Chen, Z., & **ng, Y. (2018). Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere, 206, 701–708.

    Article  CAS  Google Scholar 

  • **e, S., Sun, S., Dai, S. Y., & Yuan, J. S. (2013). Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Research, 2, 28–33.

    Article  Google Scholar 

  • Xu, L., Wang, F., Li, H. Z., Hu, Z. M., Guo, C., & Liu, C. (2010). Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. Journal of Chemical Technology and Biotechnology, 85, 1504–1507.

    CAS  Google Scholar 

  • Xu, Y., Purton, S., & Baganz, F. (2013). Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresource Technology, 129, 296–301.

    Article  CAS  Google Scholar 

  • Yan, Y. D., & Jameson, G. J. (2004). Application of the Jameson cell technology for algae and phosphorus removal from maturation ponds. International Journal of Mineral Processing, 73, 23–28.

    Article  CAS  Google Scholar 

  • Yang, L., Wang, L., Zhang, H., Li, C., Zhang, X., & Hu, Q. (2018). A novel low cost microalgal harvesting technique with coagulant recovery and recycling. Bioresource Technology, 266, 343–348.

    Article  CAS  Google Scholar 

  • Yap, R. K. L., Whittaker, M., Diao, M., Stuetz, R. M., Jefferson, B., Bulmus, V., Peirson, W. L., Nguyen, A. V., & Henderson, R. K. (2014). Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation. Water Research, 61, 253–262.

    Article  CAS  Google Scholar 

  • Yunos, F. H., Nasir, N. M., Jusoh, H. H., Khatoon, H., Lam, S. S., & Jusoh, A. (2017). Harvesting of microalgae (Chlorella sp.) from aquaculture bioflocs using an environmental-friendly chitosan-based bio-coagulant. International Biodeterioration & Biodegradation, 124, 243–249.

    Article  CAS  Google Scholar 

  • Zhang, H., Lin, Z., Tan, D., Liu, C., Kuang, Y., & Li, Z. (2017). A novel method to harvest Chlorella sp. by co-flocculation/air flotation. Biotechnology Letters, 39, 79–84.

    Article  CAS  Google Scholar 

  • Zhang, X., Amendola, P., Hewson, J. C., Sommerfeld, M., & Hu, Q. (2012). Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresource Technology, 116, 477–484.

    Article  CAS  Google Scholar 

  • Zheng, H., Gao, Z., Yin, J., Tang, X., Ji, X., & Huang, H. (2012). Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresource Technology, 112, 212–220.

    Article  CAS  Google Scholar 

  • Zhou, W., Min, M., Hu, B., Ma, X., Liu, Y., Wang, Q., Shi, J., Chen, P., & Ruan, R. (2013). Filamentous fungi assisted bio-flocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Separation and Purification Technology, 107, 158–165.

    Article  CAS  Google Scholar 

  • Zhu, C., Zhang, R., Cheng, L., & Chi, Z. (2018a). A recycling culture of Neochloris oleoabundans in a bicarbonate-based integrated carbon capture and algae production system with harvesting by auto-flocculation. Biotechnology for Biofuels, 11, 204.

    Article  CAS  Google Scholar 

  • Zhu, J., & Wakisaka, M. (2020). Harvesting of Arthrospira platensis by flocculation with phytic acid from rice bran. Bioscience, Biotechnology, and Biochemistry, 1, 1–9.

    Google Scholar 

  • Zhu, L., Li, Z., & Hiltunen, E. (2018b). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnology for Biofuels, 11, 183.

    Article  CAS  Google Scholar 

  • Zou, X., Li, Y., Xu, K., Wen, H., Shen, Z., & Ren, X. (2018). Microalgae harvesting by buoy-bead flotation process using bioflocculant as alternative to chemical flocculant. Algal Research, 32, 233–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hussain.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laraib, N., Hussain, A., Javid, A. et al. Recent trends in microalgal harvesting: an overview. Environ Dev Sustain 24, 8691–8721 (2022). https://doi.org/10.1007/s10668-021-01805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01805-2

Keywords

Navigation