Log in

Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The current research is devoted to highlight the past, present and future status of groundwater characteristics over the Arabian Peninsula (AP) and west region of Iraq. The Umm er Radhuma, Rus Dammam and Neogene deposits are the major hydrostratigraphic units supplying the main groundwater resources in the AP. Water shortage is still a major problem for many countries in the world, including oil-producing countries such as Iraq, Saudi Arabia (SA), the United Arab Emirates (UAE), Qatar, Oman and Bahrain. The withdrawal of groundwater has been reflected in salinization of agricultural soils, leading to an increase in high-cost technologies such as desalination of seawater to provide suitable water for diverse sectors. Hence, the use of seawater desalination as a major source of water is unavoidable, and country development requires the use of renewable energy as protection of the environment. The need to conserve and use groundwater resources efficiently is highly essential owing to the fact that it is the only natural source of water in such develo** countries of global importance. The review comprises various essential components related to groundwater variability including the hydrogeological aspects, climate change, drawdown and abstraction, rainwater harvesting, desertification and population increment. Based on the reviewed perspectives, various practical visions are discussed for better groundwater management and sustainability. This research is presented as a milestone for diverse future works and investigation that might be conducted for better water resources management over the AP region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdulrazzak, M. J. (1995). Water supplies versus demand in countries of Arabian Peninsula. Journal of Water Resources Planning and Management, 121(3), 227–234.

    Google Scholar 

  • Al Hajri, M., Shadid, F. T., Al-Hajri, K., & Ahmed, S. (1992). Qualitative and quantitative assessment of drained water from urban ground-water. Engineering Journal of Qatar University, 5, 237–248.

    Google Scholar 

  • Al-Basrawi, N. H., & Al-Jiburi, H. K. (2009). Hydrogeology of Al-Jazira Area. Iraqi Bulletin of Geology and Mining, 3, 71–84.

    Google Scholar 

  • Al-Fatlawi, A. N. (2010a). Hydrogeological study for Umm Er Radhuma AquiferWest of Iraq. Unpublished Ph.D. thesis, Baghdad University, Baghdad.

  • Al-Fatlawi, A. N. (2010b). Geological and hydrogeological characteristics of Umm Er Radhuma aquifer West of Iraq. Euphrates Journal of Agriculture Science, 2(4), 12–20.

    Google Scholar 

  • Ali, M. E., & Abdel-Hameed, M. (2018). The potential of nitrate removal from groundwater of Bani-Suif west area, Egypt using nanocomposite reverse osmosis membranes. Journal of Basic and Environmental Sciences, 5, 230–239.

    CAS  Google Scholar 

  • Al-Ibrahim, A. A. (1991). Excessive use of groundwater resources in Saudi Arabia: Impacts and policy options. Ambio, 20, 34–37.

    Google Scholar 

  • Al-Sayari, S. S., & Zötl, J. (1978). Quaternary period in Saudi Arabia. Sedimento-logical, hydrogeological, hydrochemical, geomorphological, and climatological investigations in Central and Eastern Saudi Arabia (Vol. 1). New York: Springer.

    Google Scholar 

  • Alsharhan, A. S., Rizk, Z. A., Nairn, A. E. M., Bakhit, D. W., & Alhajari, S. A. (2001). Hydrogeochemistry. Hydrogeology of an Arid Region: The Arabian Gulf and adjoining areas. Amsterdam: Elsevier. https://doi.org/10.1016/b978-044450225-4/50006-3.

    Book  Google Scholar 

  • Amin, M. T., Alazba, A. A., & ElNesr, M. N. (2013). Adaptation of climate variability/extreme in arid environment of the Arabian peninsula by rainwater harvesting and management. International Journal of Environmental Science and Technology, 10(1), 27–36.

    Google Scholar 

  • Apaydın, A. (2012). Dual impact on the groundwater aquifer in the Kazan Plain (Ankara, Turkey): Sand–gravel mining and over-abstraction. Environmental Earth Sciences, 65(1), 241–255.

    Google Scholar 

  • Awad, S. R. (2019). Groundwater hydrogeology and quality in Helwan area and its vicinities in Egypt. Water Science, 33(1), 10–21.

    Google Scholar 

  • Awadh, S. M. (2018). A preliminary assessment of the geochemical factors affecting groundwater and surface water quality around the rural communities in Al-Anbar, Western Desert of Iraq. Environmental Earth Sciences, 77(3), 83.

    Google Scholar 

  • Awadh, S. M., Abdulhussein, F. M., & Al-Kilabi, J. A. (2016). Hydrogeochemical processes and water-rock interaction of groundwater in Al-Dammam aquifer at Bahr Al-Najaf, Central Iraq. Iraqi Bulletin of Geology and Mining, 12(1), 1–15.

    Google Scholar 

  • Bakiewicz, W., Milne, D. M., & Noori, M. (1982). Hydrogeology of the Umm Er Radhuma aquifer, Saudi Arabia, with reference to fossil gradients. Quarterly Journal of Engineering Geology and Hydrogeology, 15(2), 105–126.

    Google Scholar 

  • Baniasad, A., Rabbani, A., Sachse, V. F., Littke, R., Moallemi, S. A., & Soleimany, B. (2016). 2D basin modeling study of the Binak Trough, northwestern Persian Gulf, Iran. Marine and Petroleum Geology, 77, 882–897.

    Google Scholar 

  • Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental panel on climate change secretariat. Technical paper, IPCC Secretariat, Geneva, 210 p.

  • Beaumont, P. (1977). Water and development in Saudi Arabia. Geographical Journal, 143, 42–60.

    Google Scholar 

  • Bedaso, Z. K., Wu, S.-Y., Johnson, A. N., & McTighe, C. (2019). Assessing groundwater sustainability under changing climate using isotopic tracers and climate modelling, southwest Ohio, USA. Hydrological Sciences Journal, 64(7), 798–807.

    CAS  Google Scholar 

  • Berndes, G. (2008). Water demand for global bioenergy production: Trends, risks and opportunities. Energy for Sustainable Development, 4, 64–71.

    Google Scholar 

  • Buday, T. (1980). The regional geology of Iraq: Stratigraphy and paleogeography (Vol. 1). Bagdad: State Organization.

    Google Scholar 

  • Chowdhury, S., & Al-Zahrani, M. (2015). Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia. Journal of King Saud University-Engineering Sciences, 27(1), 68–82.

    Google Scholar 

  • Das, B., & Pal, S. C. (2019). Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal (pp. 1–19). Development and Sustainability: India. Environment.

    Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.

    Google Scholar 

  • DeNicola, E., Aburizaiza, O. S., Siddique, A., Khwaja, H., & Carpenter, D. O. (2015). Climate change and water scarcity: The case of Saudi Arabia. Annals of Global Health, 81(3), 342–353.

    Google Scholar 

  • DeNicola, E., & Subramaniam, P. R. (2014). Environmental attitudes and political partisanship. Public Health, 128(5), 404–409.

    CAS  Google Scholar 

  • Dirks, H. (2007). Hydrochemistry of the Tertiary Aquifer System in the Eastern Part of the Arabian Peninsula. Diploma Thesis, Darmstadt, 72 p.

  • Dirks, H., Al Ajmi, H., Kienast, P., & Rausch, R. (2018). Hydrogeology of the Umm Er Radhuma aquifer (Arabian peninsula). Grundwasser, 23(1), 5–15.

    CAS  Google Scholar 

  • El-Ashry, M., & Saab, N. Z. (2010). Arab environment: Water: Sustainable management of a scarce resource. Beirut: Arab Forum for Environment and Development (AFED).

    Google Scholar 

  • ESCWA, & BGR. (2013). Inventory of Shared Water Resources in Western Asia: 1-Euphrates River Basin. Inventory of Shared Water Resources in Western Asia, pp. 47–78. http://waterinventory.org/

  • Ghorbani, M. A., Deo, R. C., Yaseen, Z. M., & Kashani, M. H. (2017). Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran. https://doi.org/10.1007/s00704-017-2244-0

  • Giorgi, F. (2006). Climate change hot-spots. Geophysical research letters, 33(8), 1–4.

    Google Scholar 

  • Helmreich, B., & Horn, H. (2009). Opportunities in rainwater harvesting. Desalination. https://doi.org/10.1016/j.desal.2008.05.046.

    Article  Google Scholar 

  • Idrotechneco, C. P. (1977). Hydrogeological exploration (Block 4). Final report. GEOSURV, international reports (26).

  • IEA, OPEC, OECD, and World Bank. (2010). Analysis of the scope of energy subsidies and suggestions for the G-20 initiative, Joint Report prepared for submission to the G-20 Summit Meeting Toronto (Canada), 26-27 June 2010 (pp. 1–81).

  • IPCC. (2007). Climate change 2007: The physical science basis. Intergovernmental Panel on Climate Change, 446(7137), 727–728. https://doi.org/10.1038/446727a.

    Article  CAS  Google Scholar 

  • Kalbus, E., Oswald, S., Wang, W., Kolditz, O., Engelhardt, I., Al-Saud, M. I., et al. (2011). Large-scale modeling of the groundwater resources on the Arabian platform. International Journal of Water Resources and Arid Environments, 1(1), 38–47.

    Google Scholar 

  • Kalhor, K., & Emaminejad, N. (2019). Sustainable development in cities: Studying the relationship between groundwater level and urbanization using remote sensing data. Groundwater for Sustainable Development, 9, 100243.

  • Kent, P. (1970). The salt plugs of the Persian Gulf region. Leicester Literary and Philosophical Society Transactions, 64, 56–88.

    Google Scholar 

  • Khan, Q., Kalbus, E., Alshamsi, D. M., Mohamed, M. M., & Liaqat, M. U. (2019). Hydrochemical analysis of groundwater in Remah and Al Khatim Regions, United Arab Emirates. Hydrology, 6(3), 60.

    CAS  Google Scholar 

  • Koohafkan, A. P. (1996). Desertification, drought and their consequences. Rome: Sustainable Development, Food and Agriculture Organization (FAO).

    Google Scholar 

  • Krasny, J., Alsam, S., & Jassim, S. Z. (2006). Hydrogeology. Geology of Iraq (1st ed.). Prague: Published by Dolin, Prague and Moravian Museum.

    Google Scholar 

  • Krishnamurthy, J., & Srinivas, G. (1995). Role of geological and geomorphological factors in ground water exploration: a study using IRS LISS data. International Journal of Remote Sensing, 16(14), 2595–2618.

    Google Scholar 

  • Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15(3), 809–817.

    Google Scholar 

  • Lanjwani, M. F., Khuhawar, M. Y., Jahangir Khuhawar, T. M., Lanjwani, A. H., Jagirani, M. S., Kori, A. H., et al. (2019). Risk assessment of heavy metals and salts for human and irrigation consumption of groundwater in Qambar city: A case study. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2019.1571670.

  • Margat, J., & Van der Gun, J. (2013). Groundwater around the world: A geographic synopsis. Boca Raton: CRC Press.

    Google Scholar 

  • Middleton, N. J., & Thomas, D. S. (1992). World atlas of desertification (United nations environment program). Wiley Online Library, Edward, Arnold, London.

  • Naganna, S. R., Deka, P. C., Ch, S., & Hansen, W. F. (2017). Factors influencing streambed hydraulic conductivity and their implications on stream–aquifer interaction: a conceptual review. Environmental Science and Pollution Research, 24(32), 24765–24789.

    CAS  Google Scholar 

  • Nairn, A. E. M., & Alsharhan, A. S. (1997). Sedimentary basins and petroleum geology of the Middle East. Amsterdam: Elsevier.

    Google Scholar 

  • Niaz, A., Khan, M. R., Ijaz, U., Yasin, M., & Hameed, F. (2018). Determination of groundwater potential by using geoelectrical method and petrographic analysis in Rawalakot and adjacent areas of Azad Kashmir, sub-Himalayas, Pakistan. Arabian Journal of Geosciences, 11(16), 468.

    Google Scholar 

  • Odhiambo, G. O. (2016). Water scarcity in the Arabian Peninsula and socio-economic implications. Applied Water Science. https://doi.org/10.1007/s13201-016-0440-1.

    Article  Google Scholar 

  • Pande, C. B., Moharir, K. N., Singh, S. K., & Varade, A. M. (2019). An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra (pp. 1–21). Development and Sustainability: Central India. Environment.

    Google Scholar 

  • Pike, J. G. (1985). Groundwater resources and development in the central region of the Arabian Gulf. Congress of the International Association of Hydrogeologists (Vol. 18, pp. 46–55). Houston: IAH.

    Google Scholar 

  • Qutbudin, I., Shiru, M. S., Sharafati, A., Ahmed, K., Al-Ansari, N., Yaseen, Z. M., et al. (2019). Seasonal drought pattern changes due to climate variability: Case study in Afghanistan. Water, 11(5), 1096. https://doi.org/10.3390/w11051096.

    Article  Google Scholar 

  • Raghavendra, N. S., & Deka, P. C. (2015). Sustainable development and management of groundwater resources in mining affected areas: A review. Procedia Earth and Planetary Science. https://doi.org/10.1016/j.proeps.2015.06.061.

    Article  Google Scholar 

  • Raghavendra, N. S., & Deka, P. C. (2016). Multistep ahead groundwater level time-series forecasting using gaussian process regression and ANFIS. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-81-322-2653-6_19.

    Article  Google Scholar 

  • Rijsberman, F. R. (2006). Water scarcity: Fact or fiction? Agricultural Water Management, 80(1–3), 5–22.

    Google Scholar 

  • Salih, S. Q., Allawi, M. F., Yousif, A. A., Armanuos, A. M., Saggi, M. K., Ali, M., et al. (2019). Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: Case study of Nasser Lake in Egypt. Engineering Applications of Computational Fluid Mechanics, 13(1), 878–891. https://doi.org/10.1080/19942060.2019.1647879.

    Article  Google Scholar 

  • Sayl, K. N., Muhammad, N. S., Yaseen, Z. M., & El-shafie, A. (2016). Estimation the physical variables of rainwater harvesting system using integrated GIS-based remote sensing approach. Water Resources Management, 30(9), 3299–3313. https://doi.org/10.1007/s11269-016-1350-6.

    Article  Google Scholar 

  • Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., et al. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes: An International Journal, 20(15), 3335–3370.

    CAS  Google Scholar 

  • Schulz, S. (2017). Experimental and numerical studies on the water balance of the Upper Mega Aquifer system. Arabian Peninsula: Technische Universität.

    Google Scholar 

  • Schulz, S., Horovitz, M., Rausch, R., Michelsen, N., Mallast, U., Köhne, M., et al. (2015). Groundwater evaporation from salt pans: Examples from the eastern Arabian Peninsula. Journal of Hydrology, 531, 792–801.

    CAS  Google Scholar 

  • Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., et al. (2001). Sequence stratigraphy of the Arabian Plate. GeoArabia, 2, 371.

    Google Scholar 

  • Shubber, S. (2009). The law of investment in Iraq. Leiden: Brill.

    Google Scholar 

  • Sissakian, V. K., & Mohammed, B. S. (2007). Stratigraphy. Iraqi Bulletin of Geology and Mining, 3, 51–124.

    Google Scholar 

  • Sowers, J., Vengosh, A., & Weinthal, E. (2011). Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Climate Change, 104(3–4), 599–627. https://doi.org/10.1007/s10584-010-9835-4.

    Article  Google Scholar 

  • Sulaiman, S. O., Shiri, J., Shiralizadeh, H., Kisi, O., & Yaseen, Z. M. (2018). Precipitation pattern modeling using cross-station perception: Regional investigation. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7898-0.

    Article  Google Scholar 

  • Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V. (2002). Investigation of submarine groundwater discharge. Hydrological Processes, 16(11), 2115–2129.

    Google Scholar 

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., et al. (2013). Ground water and climate change. Nature Climate Change, 3(4), 322.

    Google Scholar 

  • Tolba, M. K. (1992). Saving our planet: Challenges and hopes. New York: Springer.

    Google Scholar 

  • Ukayli, M. A., & Husain, T. (1988). Comparative evaluation of surface water availability, wastewater reuse and desalination in Saudi Arabia. Water International, 13(4), 218–225.

    Google Scholar 

  • UN-ESCWA, B. G. R. (2013). Inventory of shared water resources in Western Asia: Chapter 6 Jordan River Basin. Beirut: United Nations Economic and Social Commission for Western Asia. Federal Institute for Geosciences and Natural Resources.

    Google Scholar 

  • Wada, Y., & Heinrich, L. (2013). Assessment of transboundary aquifers of the world—Vulnerability arising from human water use. Environmental Research Letters, 8(2), 24003.

    Google Scholar 

  • Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive test of phonological processing: CTOPP. Austin: PRO-ED.

    Google Scholar 

  • WRI, I. (1999). UNEP (1992) Global biodiversity strategy. Guidelines for action to save, study and use earth’s biotic wealth sustainably and equitably. Washington, DC: World Resources Institute.

    Google Scholar 

  • Zaharani, K. H., Al-Shayaa, M. S., & Baig, M. B. (2011). Water conservation in the Kingdom of Saudi Arabia for better environment: Implications for extension and education. Bulgarian Journal of Agricultural Science, 17(3), 389–395.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their gratitude and appreciation to the cited relevant references of the current survey that discussed the groundwater issue in the Arabian Peninsula. Also, we thank the Ministry of Transportation (Iraq) for providing meteorological datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in publishing this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadh, S.M., Al-Mimar, H. & Yaseen, Z.M. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ Dev Sustain 23, 1–21 (2021). https://doi.org/10.1007/s10668-019-00578-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00578-z

Keywords

Navigation