Log in

Evaluation of PM2.5 Sources in Skopje Urban Area Using Positive Matrix Factorization

  • Research
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This source apportionment research was one of the first attempts to quantify the contributions of pollution sources to ambient particulate matter (PM2.5) in the urban area of Skopje. The sampling was conducted at two locations in the city of Skopje, with permanent, year-round coverage. The elemental composition of PM2.5 aerosols was analyzed with non-destructive energy dispersive X-ray fluorescence spectroscopy, water-soluble ions were analyzed photometrically, and black carbon was assessed with an optical transmissometer. Positive Matrix Factorization was used for data modelling, and the contribution of each source to total particulate mass (PM2.5) was calculated. Seven main pollution sources were identified for both sites including biomass burning, open fire burning, traffic, fuel/residual oil burning, industry, and soil/mineral dust. Biomass combustion continues to be the largest single source of ambient air pollution and, due to its particular temporal distribution, is most likely the primary cause of extreme wintertime pollution episodes. Despite being fully seasonal, biomass burning provides the greatest annual relative contribution, reaching 32% for the Novo Lisiche site and 33% for the Karposh site, and during the winter months, this source alone contributes beyond the annual PM2.5 limit levels. Traffic is the second most important source. The annual relative contribution of traffic to the total particle mass at the Novo Lisiche site was 23%, and at the Karposh site, it was 18%. Other notable sources include the combustion of fuel/residual oil, soil dust, and open fires burning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Crippa, P., Castruccio, S., Archer-Nicholls, S., et al. (2016). Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Science and Reports, 6, 37074. https://doi.org/10.1038/srep37074

    Article  ADS  CAS  Google Scholar 

  2. World health statistics 2023: Monitoring health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; 2023. Licence: CC BY‑NC‑SA 3.0 IGO.

  3. EEA Briefing no. 23/2023 - Harm to human health from air pollution in Europe: burden of disease 2023, EN HTML: TH-AM-23–026-EN-Q - ISBN: 978–92–9480–614–7 - ISSN: 2467–3196. https://doi.org/10.2800/721439

  4. Madjar, A., Gjorshoska, I., Prodanova, J., Dedinec, A., & Kocarev, L. (2023) Western Balkan societies’ awareness of air pollution. Estimations using natural language processing techniques. Ecological Informatics, 75, 102097. ISSN 1574–9541. https://doi.org/10.1016/j.ecoinf.2023.102097

  5. Mirakovski, D., Boev, B., & Boev, I.,  et al. (2019). Wintertime urban air pollution in Macedonia – Composition and source contribution of air particulate matter, Proceedings of the 18th World Clean Air Congress, pp 492–500.

  6. Almeida, S. M., Manousakas, M., Diapouli, E., et al. (2020). Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Environmental Pollution, 266(3), 115–199. https://doi.org/10.1016/j.envpol.2020.115-199

    Article  Google Scholar 

  7. Belis, C. A., Pisoni, E., Degraeuwe, B., Peduzzi, E., Thunis, P., Monforti-Ferrario, F., & Guizzardi, D. (2019). Urban pollution in the Danube and Western Balkans regions: The impact of major PM2.5 sources. Environment International, 133, 105–158. https://doi.org/10.1016/j.envint.2019.105158

    Article  CAS  Google Scholar 

  8. MoEPP (2016). Air quality improvement plan for Skopje agglomeration, Finish Meteorological Institute and Ministry of Environment and Physical Planning, Skopje.

  9. Tehnolab (2019). Integrated Polluters Inventory for Skopje, Skopje.

  10. Kovacevik, B., Wagner, A., Boman, J., Laursen, J., & Pettersson, B. (2011). Elemental composition of fine particulate matter (PM2.5) in Skopje. FYR of Macedonia. X-ray Spectrom., 40, 280–288.

    ADS  CAS  Google Scholar 

  11. Anttila, P., Stefanovska, A., Nestorovska-Krsteska, A., Grozdanovski, L., Atanasov, I., Golubov, N., & Walden, J. (2016). Characterisation of extreme air pollution episodes in an urban valley in the Balkan Peninsula. Air Quality, Atmosphere and Health, 9, 129–141.

    Article  CAS  Google Scholar 

  12. Kendrovski, V. (2006). The impact of ambient temperature on mortality among the urban population in Skopje, Macedonia during the period 1996–2000. BMC Public Health, 6, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kendrovski, V., Spasenovska, M., & Menne, B. (2014). The public health impacts of climate change in the former Yugoslav Republic of Macedonia. International Journal of Environmental Research and Public Health, 11, 5975–5988.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sanchez Martinez, G., Spadaro, J. V., Chapizanis, D., Kendrovski, V., Kochubovski, M., & Mudu, P. (2018). Health impacts and economic costs of air pollution in the metropolitan area of Skopje. International Journal of Environmental Research and Public Health 15, 626. https://doi.org/10.3390/ijerph15040626

  15. Belis, C. A., Favez, O., Mircea, M., Diapouli, E., Manousakas, M. I., Vratolis, S., Gilardoni, S., Paglione, M., Decesari, S., Mocnik, G., Mooibroek, D., Salvador, P., Takahama, S., Vecchi, R., & Paatero, P. (2019). European guide on air pollution source apportionment with receptor models - Revised version 2019, EUR 29816 EN. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/439106,JRC117306

    Article  Google Scholar 

  16. Markert, B., Wünschmann, S., & Baltrėnaitė, E. (2012). Innovative observation of the environment. Bioindicators and biomonitors: Definitions, strategies and applications, Journal of Environmental Engineering and Landscape Management, 20(3), 221–239. https://doi.org/10.3846/16486897.2011.633338

    Article  Google Scholar 

  17. Miasayedava, L., Kaugerand, J., & Tuhtan, J. A. (2023). Lightweight assimilation of open urban ambient air quality monitoring data and numerical simulations with unknown uncertainty. Environmental Modeling and Assessment, 28, 961–975. https://doi.org/10.1007/s10666-023-09909-x

    Article  Google Scholar 

  18. Goswami, P., Prakash, M., & Ranjan, R. K., et al. (2023). A hybrid deep learning model for multi-step ahead prediction of PM2.5 concentration across India. Environmental Modeling and Assessment, 28, 803–816. https://doi.org/10.1007/s10666-023-09902-4

  19. MAKStat Database https://makstat.stat.gov.mk/, State Statical Office, Assessed on 21.04.2022.

  20. Standard operating procedure for PM2.5 cation analysis, revision 7, August 2009, Environmental and Industrial Sciences Division RTI International, Research Triangle Park, North Carolina.

  21. Annexure-A: Air quality sampling and operational procedure. (2018). https://www.teriin.org/sites/default/files/2018-08/Annexures.pdf

  22. Model standard operating procedures for sampling and analysis, CPCB and ASEM-GTZ, Delhi. http://learning-cleanairasia.org/lms/library/ga2/05-Model-Standard-Operating-Procedures-(SOPs)-for-Sampling-and-Analysis.pdf

  23. Standard operating procedure for the analysis of anions and cations in PM2.5 speciation samples by ion chromatography, MLD064, Revision 1.0 (2018) Northern Laboratory Branch Monitoring and Laboratory Division, California Air Resources Board. https://ww2.arb.ca.gov/sites/default/files/2018-10/mld064.pdf

  24. Lee, E., Chan, C. K., & Paatero, P. (1999). Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 33, 3201–3212.

    Article  ADS  CAS  Google Scholar 

  25. Polissar, A. V., Hopke, P. K., Paatero, P., Kaufmann, Y. J., Hall, D. K., Bodhaine, B. A., Dutton, E. G., & Harris, J. M. (1999). The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmospheric Environment, 33, 2441–2458.

    Article  ADS  CAS  Google Scholar 

  26. Aimanant, S., & Ziemann, P. J. (2013). Development of spectrophotometric methods for the analysis of functional groups in oxidized organic aerosol. Aerosol Science and Technology, 47(6), 581–591. https://doi.org/10.1080/02786826.2013.773579

    Article  ADS  CAS  Google Scholar 

  27. Juntto, S., & Paatero, P. (1994). Analysis of daily precipitation data by positive matrix factorization. Environmetrics, 5, 127–144.

    Article  Google Scholar 

  28. **e, Y., & Berkowitz, C. M. (2006). The use of positive matrix factorization with conditional probability functions in air quality studies: An application to hydrocarbon emissions in Houston, Texas. Atmospheric Environment, 40, 3070–3091.

    Article  ADS  CAS  Google Scholar 

  29. Begum, B. A., Kim, E., Biswas, S. K., & Hopke, P. K. (2004). Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmospheric Environment, 38, 3025–3038.

    Article  ADS  CAS  Google Scholar 

  30. Bzdusek, P. A., Christensen, E. R., Lee, C. M., Pakadeesusuk, U., & Freedman, D. C. (2006). PCB congeners and dechlorination in sediments of Lake Hartwell, South Carolina, determined from cores collected in 1987 and 1988. Environmental Science and Technology, 40, 109–119.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. DelValls, T. A., Forja, J. M., González-Mazo, E., & Gómez-Parra, A. (1998). Determining contamination sources in marine sediments using multivariate analysis. Trends in analytical chemistry, 17, 181–192.

    Article  CAS  Google Scholar 

  32. Singh, K. P., Malik, A., Singh, V. K., & Sinha, S. (2006). Multi-way data analysis of soils irrigated with wastewater. A case study. Chemometrics and Intelligent Laboratory Systems, 83, 1–12.

    Article  CAS  Google Scholar 

  33. Soonthornnonda, P., & Christensen, E. R. (2008). Source apportionment of pollutants and flows of combined sewer wastewater. Water Research, 42, 1989–1998.

    Article  CAS  PubMed  Google Scholar 

  34. Hopke, P. K. (2003). Recent developments in receptor modeling. Journal of chemometrics, 17, 255–265.

    Article  CAS  Google Scholar 

  35. Paatero, P., & Tapper, U. (1994). Positive Matrix Factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126.

    Article  Google Scholar 

  36. Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17, 185–206.

    Article  ADS  CAS  Google Scholar 

  37. Anttila, P., Paatero, P., Tapper, U., & Järvinen, O. (1995). Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment, 14, 1705–1718.

    Article  ADS  Google Scholar 

  38. Ammato, F., Pandolfi, M., Escrig, A., et al. (2009). Quantifying road dust resuspension in urban environment by multilinear engine: A comparison with PMF2. Atmospheric Environment, 43, 2770–2780.

    Article  ADS  Google Scholar 

  39. Putaud, J. P., Van Dingenen, R., Alaustey, A., Bauer, H., Birmili, W., et al. (2010). A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44, 1308–1320.

    Article  ADS  CAS  Google Scholar 

  40. Larsen, B. R., Gilardoni, S., Stenström, K., Niedzialek, J., Jimenez, J., & Belis, C. A. (2012). Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources, Atmospheric Environment, 50, 203–213. https://doi.org/10.1016/j.atmosenv.2011.12.038

    Article  ADS  CAS  Google Scholar 

  41. Argyropoulos, G., Manoli, E., Kouras, A., & Samara, C. (2012). Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece. Science of the Total Environment, 432, 12–22. https://doi.org/10.1016/j.scitotenv.2012.05.076

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Argyropoulos, G., Grigoratos, Th., Voutsinas, M., & Samara, C. (2013). Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece. Environmental Science and Pollution Research, 20, 7214–7230. https://doi.org/10.1007/s11356-013-1721-y

    Article  CAS  PubMed  Google Scholar 

  43. Bernardoni, V., Vecchi, R., Valli, G., Piazzalunga, A., & Fermo, P. (2011). PM10 source apportionment in Milan (Italy) using time-resolved data. Science of the Total Environment, 409(22), 4788–4795. https://doi.org/10.1016/j.scitotenv.2011.07.048

    Article  ADS  CAS  PubMed  Google Scholar 

  44. SPECIEUROPE data base, https://source-apportionment.jrc.ec.europa.eu/Specieurope/sources.aspx. Assessed on 21.04.2022.

  45. Bove, M. C., Brotto, P., Cassola, F., Cuccia, E., Massabò, D., Mazzino, A., et al. (2014). An integrated PM2. 5 source apportionment study: Positive matrix factorisation vs. the chemical transport model CAMx. Atmospheric environment, 94, 274–286. https://doi.org/10.1016/j.atmosenv.2014.05.039

    Article  ADS  CAS  Google Scholar 

  46. Diapouli, E., Manousakas, M., Vratolis, S., Vasilatou, V., Maggos, Th., Saraga, D., Grigoratos, Th., Argyropoulos, G., Voutsa, D., Samara, C., & Eleftheriadis, K. (2017). Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmospheric Environment, 164, 416–430. https://doi.org/10.1016/j.atmosenv.2017.06.016

    Article  ADS  CAS  Google Scholar 

  47. Zhang, X., Hecobian, A., Zheng, M., Frank, N. H., & Weber, R. J. (2010). Biomass burning impact on PM2.5 over the southeastern US during 2007: Integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmospheric Chemistry and Physics, 10, 6839–6853. https://doi.org/10.5194/acp-10-6839-2010

    Article  ADS  CAS  Google Scholar 

  48. Lee, S., Liu, W., Wang, Y., Russell, A. G., & Edgerton, E. S. (2008). Source apportionment of PM 2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmospheric Environment, 42, 4126–4137.

    Article  ADS  CAS  Google Scholar 

  49. Duvall, R. M., Majestic, B. J., Shafer, M. M., Chuang, P. Y., Simoneit, B. R. T., & Schauer, J. J. (2008). The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmospheric Environment, 42, 5872–5884. https://doi.org/10.1016/j.atmosenv.2008.03.028

    Article  ADS  CAS  Google Scholar 

  50. Sun, Y., Zhuang, G., Tang, A., Wang, Y., & An, Z. (2006). Chemical characteristics of PM2.5 and PM10 in haze−fog episodes in Bei**g. Environmental Science and Technology, 40, 3148–3155. https://doi.org/10.1021/es051533g

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Zhou, Y., Zheng, N., Luo, L., Zhao, J., Qu, L., Guan, H., **ao, H., Zhang, Z., Tian, J., & **ao, H. (2020). Biomass burning related ammonia emissions promoted a self-amplifying loop in the urban environment in Kunming (SW China). Atmospheric Environment, 118–138, 2020. https://doi.org/10.1016/j.atmosenv.2020.118138

    Article  CAS  Google Scholar 

  52. Paulot, F., Paynter, D., Ginoux, P., Naik, V., Whitburn, S., Van Damme, M., Clarisse, L., Coheur, P. F., & Horowitz, L. W. (2017). Gas-aerosol partitioning of ammonia in biomass burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate. Geophysical Research Letters, 44(15), 8084–8093. https://doi.org/10.1002/2017GL074215

    Article  ADS  CAS  Google Scholar 

  53. Pant, P., & Harrison, R. M. (2012). Critical review of receptor modelling for particulate matter: A case study of India. Atmospheric Environment, 49, 1–12.

    Article  ADS  CAS  Google Scholar 

  54. Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78–97. https://doi.org/10.1016/j.atmosenv.2013.04.028

    Article  ADS  CAS  Google Scholar 

  55. Grigoratos, T., & Martini, G. (2019). Brake wear particle emissions: A review. Environmental Science and Pollution Research, 22, 2491–2504. https://doi.org/10.1007/s11356-014-3696-8

    Article  CAS  Google Scholar 

  56. Piscitello, A., Bianco, C., Casasso, A., & Sethi, R. (2021). Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Science of the Total Environment, 766, 144440. https://doi.org/10.1016/j.scitotenv.2020.144440

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Smichowski, P., Gómez, D., Frazzoli, C., & Caroli, S. (2007). Traffic-related elements in airborne particulate matter. Applied Spectroscopy Reviews, 43, 23–49.

    Article  ADS  Google Scholar 

  58. Liao, H. T., Chou, C. C. K., Chow, J. C., Watson, J. G., Hopke, P. K., & Wu, C. F. (2015). Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environmental Pollution, 205, 121–130.

    Article  CAS  PubMed  Google Scholar 

  59. Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., Li, X., An, K., & Chu, J. (2013). Characterization and source apportionment of PM2.5 in an urban environment in Bei**g. Aerosol Air Qual. Res., 13, 574–583. https://doi.org/10.4209/aaqr.2012.07.0192

    Article  CAS  Google Scholar 

  60. Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087

    Article  ADS  CAS  Google Scholar 

  61. Włodarczyk-Gębik, A., Gabriel, A., Dubis, M., & Machowska, M. (2022). KTP—Collectively improving air quality in Krakow: A new air quality plan for the Małopolska region. In: Deserti, A., Real, M., Schmittinger, F. (eds) Co-creation for responsible research and innovation. Springer Series in Design and Innovation, 15, Springer, Cham. https://doi.org/10.1007/978-3-030-78733-2_7

  62. Traczyk, P., & Gruszecka-Kosowska, A. (2020). The condition of air pollution in Kraków, Poland, in 2005–2020, with health risk assessment. International Journal of Environmental Research and Public Health, 17(17), 6063. https://doi.org/10.3390/ijerph17176063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

AMBICON UGD Lab prepared the Source Apportionment Study for the Skopje Agglomeration as part of the Tackling Air Pollution in the City of Skopje Project, which was implemented by UNDP Skopje and SIDA, the Swedish government agency for development cooperation, with support from the Ministry of Environment and Physical Planning and the City of Skopje.

Author information

Authors and Affiliations

Authors

Contributions

D.M. and B.B. initiated the research and paper. D.M. and A.Z. wrote the main manuscript text and realize the modelling and prepared all figures. M.HN., N.D., I.B. and G.D. had obligations around the sampling procedure.

A.Z. and T.SI. analyzed filters using XRF E.D. and A.M.—analyzed water-soluble ions using spectrometry and black carbon using Optical Transmissometer. All authors reviewed the manuscript.

Corresponding author

Correspondence to Afrodita Zendelska.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

Not includes interests of a financial or personal nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 839 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirakovski, D., Zendelska, A., Boev, B. et al. Evaluation of PM2.5 Sources in Skopje Urban Area Using Positive Matrix Factorization. Environ Model Assess (2024). https://doi.org/10.1007/s10666-024-09961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10666-024-09961-1

Keywords

Navigation