Log in

The effect of electrical double layers on evaporation of sessile droplets

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We develop a lubrication-type model of an axisymmetric evaporating sessile liquid droplet in contact with pure vapor. The liquid is a symmetric electrolyte, a two-component expression for disjoining pressure accounts for both unbalanced London–van der Waals interactions and repulsion of electrical double layers formed near liquid–solid and liquid–vapor interfaces. The electric potential in the liquid is described using the Debye–Hückel approximation. We consider nonequilibirum effects during evaporation from the liquid surface and an increase of solute concentration as a result of solvent evaporation. Electrostatic effects lead to reduction of the evaporation rates at initial stages of evolution but the trend is reversed at the later stages, resulting in significantly lower lifetimes of evaporating droplets. The apparent contact angle, defined by the maximum interfacial slope, tends to be lower when the electrostatic effects are more significant. Evaporative cooling is also considered in the framework that accounts for heat conduction in the substrate and shown to increase the droplet lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dugas V, Broutin J, Souteyrand E (2005) Droplet evaporation study applied to DNA chip manufacturing. Langmuir 21(20):9130–9136

    Article  Google Scholar 

  2. Kim J (2007) Spray cooling heat transfer: the state of the art. Int J Heat Fluid Flow 28(4):753–767

    Article  Google Scholar 

  3. Lim T, Han S, Chung J, Chung JT, Ko S, Grigoropoulos CP (2009) Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate. Int J Heat Mass Transf 52(1–2):431–441

    Article  Google Scholar 

  4. Deegan RD, Baka** O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62(1):756–765

    Article  Google Scholar 

  5. Hu H, Larson RG (2002) Evaporation of a sessile droplet on a substrate. J Phys Chem B 106(6):1334–1344

    Article  Google Scholar 

  6. Popov YO (2005) Evaporative deposition patterns: spatial dimensions of the deposit. Phys Rev E 71(3):036313

    Article  Google Scholar 

  7. Brutin D, Editor (2015) Droplet wetting and evaporation: from pure to complex fluids. Academic Press, San Diego

  8. Brutin D, Starov V (2018) Recent advances in droplet wetting and evaporation. Chem Soc Rev 47(2):558–585

    Article  Google Scholar 

  9. Cazabat AM, Guéna G (2010) Evaporation of macroscopic sessile droplets. Soft Matter 6(12):2591–2612

    Article  Google Scholar 

  10. Erbil HY (2012) Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv Coll Interface Sci 170(1–2):67–86

    Article  Google Scholar 

  11. Karapetsas G, Matar OK, Valluri P, Sefiane K (2012) Convective rolls and hydrothermal waves in evaporating sessile drops. Langmuir 28(31):11433–11439

    Article  Google Scholar 

  12. Sáenz PJ, Sefiane K, Kim J, Matar OK, Valluri P (2015) Evaporation of sessile drops: a three-dimensional approach. J Fluid Mech 772:705–739

    Article  MathSciNet  Google Scholar 

  13. Gokhale SJ, Plawsky JL, Wayner PC Jr (2003) Experimental investigation of contact angle, curvature, and contact line motion in dropwise condensation and evaporation. J Colloid Interface Sci 259(2):354–366

    Article  Google Scholar 

  14. Gokhale SJ, Plawsky JL, Wayner PC Jr, DasGupta S (2004) Inferred pressure gradient and fluid flow in a condensing sessile droplet based on the measured thickness profile. Phys Fluids 16(6):1942–1955

    Article  MATH  Google Scholar 

  15. Sodtke C, Ajaev VS, Stephan P (2007) Evaporation of thin liquid droplets on heated surfaces. Heat Mass Transf 43(7):649–657

    Article  MATH  Google Scholar 

  16. Sodtke C, Ajaev VS, Stephan P (2008) Dynamics of volatile liquid droplets on heated surfaces: theory versus experiment. J Fluid Mech 610:343–362

    Article  MathSciNet  MATH  Google Scholar 

  17. Ye S, Zhang L, Wu CM, Li YR, Liu QS (2020) Experimental investigation of evaporation dynamic of sessile droplets in pure vapor environment with low pressures. Int J Therm Sci 149:106213

    Article  Google Scholar 

  18. Chatterjee A, Plawsky JL, Wayner PC Jr, Chao DF, Sicker RJ, Lorik T, Chestney L, Margie R, Eustace J, Zoldak J (2013) Constrained vapor bubble heat pipe experiment aboard the international space station. J Thermophys Heat Transfer 27(2):309–319

    Article  Google Scholar 

  19. Lee S, Mudawar I (2019) Enhanced model for annular flow in micro-channel heat sinks, including effects of droplet entrainment/deposition and core turbulence. Int J Heat Mass Transf 133:510–530

    Article  Google Scholar 

  20. Wiedenheft KF, Guo HA, Qu X, Boreyko JB, Liu F, Zhang K, Eid F, Choudhury A, Li Z, Chen CH (2017) Hotspot cooling with jum**-drop vapor chambers. Appl Phys Lett 110(14):141601

    Article  Google Scholar 

  21. Mazzoco RR, Wayner PC Jr (1999) Aqueous wetting films on fused quartz. J Colloid Interface Sci 214(2):156–169

    Article  Google Scholar 

  22. Brkljaca Z, Namjesnik D, Lutzenkirchen J, Predota M, Preocanin T (2018) Quartz/aqueous electrolyte solution interface: molecular dynamic simulation and interfacial potential measurements. J Phys Chem C 122(42):24025–24036

    Article  Google Scholar 

  23. Anderson DM, Davis SH (1995) The spreading of volatile liquid droplets on heated surfaces. Phys Fluids 7(2):248–265

    Article  MATH  Google Scholar 

  24. Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81(3):1131

    Article  Google Scholar 

  25. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69(3):931

    Article  Google Scholar 

  26. Burelbach JP, Bankoff SG, Davis SH (1988) Nonlinear stability of evaporating/condensing liquid films. J Fluid Mech 195:463–494

    Article  MATH  Google Scholar 

  27. De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57(3):827

    Article  MathSciNet  Google Scholar 

  28. Ajaev VS (2005) Spreading of thin volatile liquid droplets on uniformly heated surfaces. J Fluid Mech 528:279–296

    Article  MathSciNet  MATH  Google Scholar 

  29. Ajaev VS, Gambaryan-Roisman T, Stephan P (2010) Static and dynamic contact angles of evaporating liquids on heated surfaces. J Colloid Interface Sci 342(2):550–558

    Article  Google Scholar 

  30. Craster R, Matar O, Sefiane K (2009) Pinning, retraction, and terracing of evaporating droplets containing nanoparticles. Langmuir 25(6):3601–3609

    Article  Google Scholar 

  31. Winter KN, Anderson DM, Braun RJ (2010) A model for wetting and evaporation of a post-blink precorneal tear film. Math Med Biol 27(3):211–225

    Article  MathSciNet  MATH  Google Scholar 

  32. Derjaguin BV, Churaev NV, Muller VM (1987) Surface forces. Springer, New York

    Book  Google Scholar 

  33. Kirby BJ (2013) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  34. Probstein RF (2003) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New York

    Google Scholar 

  35. Allan RS, Mason SG (1962) Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops. Proc R Soc Lond A 267:45–61

    Article  Google Scholar 

  36. Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1(1):111–146

    Article  Google Scholar 

  37. Taylor GI (1966) Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc R Soc Lond Ser A 291(1425):159–166

    Article  Google Scholar 

  38. Papageorgiou DT (2019) Film flows in the presence of electric fields. Annu Rev Fluid Mech 51(1):155–187

    Article  MathSciNet  MATH  Google Scholar 

  39. Saville DA (1997) Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu Rev Fluid Mech 29(1):27–64

    Article  MathSciNet  Google Scholar 

  40. Schnitzer O, Yariv E (2015) The Taylor-Melcher leaky dielectric model as a macroscale electrokinetic description. J Fluid Mech 773:1–33

    Article  MathSciNet  MATH  Google Scholar 

  41. Misyura S (2018) Non-isothermal evaporation in a sessile droplet of water-salt solution. Int J Therm Sci 124:76–84

    Article  Google Scholar 

  42. Wang Z, Karapetsas G, Valluri P, Sefiane K, Williams A, Takata Y (2021) Dynamics of hygroscopic aqueous solution droplets undergoing evaporation or vapour absorption. J Fluid Mech 912

  43. Zhang J, Borg MK, Sefiane K, Reese JM (2015) Wetting and evaporation of salt-water nanodroplets: a molecular dynamics investigation. Phys Rev E 92(5):052403

    Article  Google Scholar 

  44. Ketelaar C, Ajaev VS (2015) Evaporation, viscous flow, and electrostatic interaction of charged interfaces in the apparent contact line region. Phys Fluids 27(11):112110

    Article  MATH  Google Scholar 

  45. Barrett JA, Ajaev VS (2019) Modeling of moving liquid-vapor interfaces in the constrained vapor bubble system. Microgravity Sci Technol 31(5):685–692

    Article  Google Scholar 

  46. Ajaev VS (2012) Interfacial fluid mechanics. Springer, New York

    Book  MATH  Google Scholar 

  47. Ajaev VS, Homsy GM (2001) Steady vapor bubbles in rectangular microchannels. J Colloid Interface Sci 240(1):259–271

    Article  Google Scholar 

  48. Oron A, Bankoff SG, Davis SH (1996) Thermal singularities in film rupture. Phys Fluids 8(12):3433–3435

    Article  MATH  Google Scholar 

  49. Murisic N, Kondic L (2011) On evaporation of sessile drops with moving contact lines. J Fluid Mech 679:219–246

    Article  MATH  Google Scholar 

  50. Jensen OE, Grotberg JB (1993) The spreading of heat or soluble surfactant along a thin liquid film. Phys Fluids A 5(1):58–68

    Article  MATH  Google Scholar 

  51. Conroy DT, Craster RV, Matar OK, Papageorgiou DT (2010) Dynamics and stability of an annular electrolyte film. J Fluid Mech 656:481–506

    Article  MathSciNet  MATH  Google Scholar 

  52. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw (TOMS) 31(3):363–396

    Article  MathSciNet  MATH  Google Scholar 

  53. Gatapova EY, Kabov OA, Ajaev VS (2019) Evaporation and interface dynamics in microregion on heated substrate of non-uniform wettability. Int J Heat Mass Transf 142:118355

    Article  Google Scholar 

  54. Kabov O (2000) Breakdown of a liquid film flowing over the surface with a local heat source. Thermophys Aeromech 7(4):513–520

    Google Scholar 

  55. Kochkin DY, Zaitsev DV, Kabov OA (2020) Thermocapillary rupture and contact line dynamics in the heated liquid layers. Interfacial Phenomena Heat Transf 8(1)

  56. Nikolayev V, Janeček V (2012) Impact of the apparent contact angle on the bubble departure at boiling. Int J Heat Mass Transf 55(23–24):7352–7354

    Article  Google Scholar 

  57. Thiele U, Mertig M, Pompe W (1998) Dewetting of an evaporating thin liquid film: heterogeneous nucleation and surface instability. Phys Rev Lett 80(13):2869

    Article  Google Scholar 

  58. Das S, Mitra SK (2013) Electric double-layer interactions in a wedge geometry: change in contact angle for drops and bubbles. Phys Rev E 88(3):033021

    Article  Google Scholar 

  59. Dörr A, Hardt S (2014) Line tension and reduction of apparent contact angle associated with electric double layers. Phys Fluids 26(8):082105

    Article  Google Scholar 

  60. Ait Saada M, Chikh S, Tadrist L (2013) Evaporation of a sessile drop with pinned or receding contact line on a substrate with different thermophysical properties. Int J Heat Mass Transf 58(1):197–208

    Article  Google Scholar 

  61. Dunn GJ, Wilson SK, Duffy BR, David S, Sefiane K (2009) The strong influence of substrate conductivity on droplet evaporation. J Fluid Mech 623:329–351

    Article  MATH  Google Scholar 

  62. Schofield FGH, Wilson SK, Pritchard D, Sefiane K (2018) The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects. J Fluid Mech 851:231–244

    Article  MathSciNet  MATH  Google Scholar 

  63. Sobac B, Brutin D (2012) Thermal effects of the substrate on water droplet evaporation. Phys Rev E 86(2):021602

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Grant No. 80NSSC18K0332. We are grateful to the anonymous referees for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Ajaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrett, J.A., Ajaev, V.S. The effect of electrical double layers on evaporation of sessile droplets. J Eng Math 134, 10 (2022). https://doi.org/10.1007/s10665-022-10227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-022-10227-6

Keywords

Navigation