Log in

Appraising water resources for irrigation and spatial analysis based on fuzzy logic model in the tribal-prone areas of Bangladesh

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The lack of quality water resources for irrigation is one of the main threats for sustainable farming. This pioneering study focused on finding the best area for farming by looking at irrigation water quality and analyzing its location using a fuzzy logic model on a Geographic Information System platform. In the tribal-prone areas of Khagrachhari Sadar Upazila, Bangladesh, 28 surface water and 39 groundwater samples were taken from shallow tube wells, rivers, canals, ponds, lakes, and waterfalls. The samples were then analyzed for irrigation water quality parameters like electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium bicarbonate (RSBC), magnesium hazard ratio (MHR), Kelley’s ratio (KR), and permeability index (PI). Fuzzy Irrigation Water Quality Index (FIWQI) was employed to determine the irrigation suitability of water resources. Spatial maps for parameters like EC, KR, MH, Na%, PI, SAR, and RSBC were developed using fuzzy membership values for groundwater and surface water. The FIWQI results indicate that 100% of the groundwater and 75% of the surface water samples range in the categories of excellent to good for irrigation uses. A new irrigation suitability map constructed by overlaying all parameters showed that surface water (75%) and some groundwater (100%) in the northern and southwestern portions are fit for agriculture. The western and central parts are unfit for irrigation due to higher bicarbonate and magnesium contents. The Piper and Gibbs diagram also indicated that the water in the study area is magnesium-bicarbonate type and the primary mechanism of water chemistry is controlled by the weathering of rocks, respectively. This research pinpoints the irrigation spatial pattern for regional water resource practices, identifies novel suitable areas, and improves sustainable agricultural uses in tribal-prone areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Abdel-Rahman, G. N. E. (2022). Heavy metals, definition, sources of food contamination, incidence, impacts and remediation: A literature review with recent updates. Egyptian Journal of Chemistry, 65(1), 419–437.

    Google Scholar 

  • Adimalla, N., & Venkatayogi, S. (2018). Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State South India. Applied Water Science, 8, 44. https://doi.org/10.1007/s13201-018-0682-1

    Article  CAS  Google Scholar 

  • Adimalla, N., & Wu, J. H. (2019). Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Human and Ecological Risk Assessment, 25, 191–216.

    Article  CAS  Google Scholar 

  • Adimalla, N. (2019). Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Exposure and Health, 11(2), 109–123.

    Article  CAS  Google Scholar 

  • Ahmed, M. J., Haque, M. R., Ahsan, A., et al. (2010). Physicochemical assessment of surface and groundwater quality of the greater Chittagong region of Bangladesh. Pakistan Journal of Analytical & Environmental Chemistry, 11(2), 1–11.

    CAS  Google Scholar 

  • Akter, T., Ghosh, S., Sarker, S., Rahman, M. M., & Nabi, K. M. (2019). Quantitative assessment of ionic status in pond water for irrigation and aquaculture usage in the selected sites of Mymensingh areas, Bangladesh. Research in Agriculture Livestock and Fisheries, 6, 301–313. https://doi.org/10.3329/ralf.v6i2.43053

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). American Public Health Association Inc.

    Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  • Aravinthasamy, P., Karunanidhi, D., Subba Rao, N., et al. (2020). Irrigation risk assessment of groundwater in a non-perennial river basin of South India: Implication from irrigation water quality index (IWQI) and geographical information system (GIS) approaches. Arabian Journal of Geosciences, 13, 1125. https://doi.org/10.1007/s12517-020-06103-1

    Article  CAS  Google Scholar 

  • Arun, P. V. (2013). A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Science, 16(2), 133–139. https://doi.org/10.1016/j.ejrs.2013.09.001

    Article  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper, 29, 1–144.

    Google Scholar 

  • Banerjee, P., & Prasad, B. (2020). Determination of concentration of total sodium and potassium in surface and ground water using a fame photometer. Applied Water Science, 10, 113. https://doi.org/10.1007/s13201-020-01188-1

    Article  CAS  Google Scholar 

  • BBS. (2015). Population and housing census 2011, Zila report: Khagrachhari, Bangladesh bureau of statistics, statistics and informatics division, ministry of planning, government of the people’s republic of Bangladesh.

  • Bonham-Carter, G. F. (1994). Geographic information systems for geo-scientists: Modelling with GIS. Pergamon Press.

    Google Scholar 

  • Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford University Press.

    Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Venkatramanan, S., Nepolian, M., Pradeep, K., Banajarani Panda Thivya, C., & Thilagavathi, R. (2022). Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on fuzzy logic technique. Environmental Research, 204, 111729. https://doi.org/10.1016/j.envres.2021.111729

    Article  CAS  Google Scholar 

  • Demir, V., Dere, T., Ergin, S., Cakır, Y., & Celik, F. (2015). Determination and health risk assessment of heavy metals in drinking water of Tunceli, Turkey. Water Resources, 42, 508–516.

  • DOE. (1997). The environment conservation rules, 1997. Department of environment, ministry of environment and forest, government of the people’s republic of Bangladesh. https://faolex.fao.org/docs/pdf/bgd19918.pdf.

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69, 123–134.

    Article  CAS  Google Scholar 

  • Elbeltagi, A., Pande, C. B., Kouadri, S., & Islam, A. R. M. T. (2022). Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India. Environmental Science and Pollution Research, 1–15.

  • Esri. (2023). Fuzzy overlay (spatial analyst). https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/fuzzy-overlay.htm. Accessed 13 Mar.

  • Ghosh, A. B., Bajaj, J. C., Hasan, R., & Singh, D. (1983). Soil and water testing methods: A laboratory manual (pp. 31–36). IARI.

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  CAS  Google Scholar 

  • Grzebisz, W. (2011). Magnesium–food and human health. Journal of Elementology, 16(2). https://doi.org/10.5601/jelem.2011.16.2.13

  • Gugulothu, S., Subbarao, N., Das, R., et al. (2022). Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India. Applied Water Science, 12, 142. https://doi.org/10.1007/s13201-022-01583-w

    Article  CAS  Google Scholar 

  • Hao, O. J., Chen, J. M., Huang, L., & Buglass, R. L. (1996). Sulfate-reducing bacteria. Critical Reviews in Environmental Science and Technology, 26(2), 155–187.

    Article  CAS  Google Scholar 

  • Helal, U. S. M., Saiful, H., Rahman, M. S., Hossain, M. F., & Laiju, M. M. (2003). Quality assessment of well and pond water for irrigation in different aquifers of Khagrachhari in Bangladesh. Pakistan Journal of Biological Sciences, 6(20), 1720–1724.

    Article  Google Scholar 

  • Hossain, S., Khan, R., Anik, A. H., Siddique, M. A. B., Tamim, U., Islam, A. R. M. T., Idris, A. M., & Khaleque, M. A. (2023). Natural and anthropogenic contributions to the elemental compositions and subsequent ecological consequences of a Transboundary River’s sediments (Punarbhaba, Bangladesh). Environmental Research, 216, 114444.

    Article  CAS  Google Scholar 

  • Islam, M. S., Islam, M. A., Alam, M. S., & Reshma, B. Z. (1998). Effect of shrimp farming on physico-chemical qualities of water in some medium saline areas in greater Khulna district. Bangladesh Journal of Fisheries, 21, 82–92.

    Google Scholar 

  • Islam, M. J., Shah, Md., Helal Uddin, M. W., Zaman, R. I. M., & Rahman, M. S. (2003). Toxicity assessment of ground water in different aquifers of Khagrachari in Bangladesh. Asian Journal of Plant Sciences, 2, 257–260. https://doi.org/10.3923/ajps.2003.257.260

    Article  Google Scholar 

  • Islam, M. S., Saito, T., & Kurasaki, M. (2015). Phytofiltration of arsenic and cadmium using Micranthemum umbrosum: Phytotoxicity, uptake kinetics and mechanism. Ecotoxicology and Environmental Safety, 112, 193–200. https://doi.org/10.1016/j.ecoenv.2014.11.006

    Article  CAS  Google Scholar 

  • Islam, M. S., Islam, M. S., Mamun, M. A. H., Islam, S. M. A., & Eaton, D. W. (2016). Total and dissolved metals in the industrial wastewater: A case study from Dhaka Metropolitan, Bangladesh. Environmental Nanotechnology, Monitoring and Assessment, 5, 74–80. https://doi.org/10.1016/j.enmm.2016.04.001

    Article  Google Scholar 

  • Islam, A. R. M. T., Shen, S., Bodrud-Doza, M. D., & Safiur Rahman, M. (2017b). Assessing irrigation water quality in Faridpur district of Bangladesh using several indices and statistical approaches. Arabian Journal of Geosciences, 10(19), 418. https://doi.org/10.1007/s12517-017-3199-2

    Article  CAS  Google Scholar 

  • Islam, A. R. M. T., Shen, S., Haque, M. A., et al. (2018a). Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches. Environment, Development and Sustainability, 20(5), 1935–1959. https://doi.org/10.1007/s10668-017-9971-3

    Article  Google Scholar 

  • Islam, A. R. M. T., Shen, S., Haque, M. A., Bodrud-Doza, M., Maw, K. W., & Habib, M. A. (2018b). Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches. Environment, Development and Sustainability, 20, 1935–1959.

    Article  Google Scholar 

  • Islam, M. S., Hosen, M. M. L., & Uddin, M. N. (2019). Phytodesalination of saline water by using Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens. International Journal of Environmental Science and Technology, 16(2), 965–972. https://doi.org/10.1007/s13762-018-1705-z

    Article  CAS  Google Scholar 

  • Islam, M. S., Nakagawa, K., Abdullah-Al-Mamun, M., Khan, A. S., Goni, M. A., & Berndtsson, R. (2022a). Spatial distribution and source identification of water quality parameters of an industrial seaport riverbank area in Bangladesh. Water, 14(9), 1356.

    Article  CAS  Google Scholar 

  • Islam, M. S., Haque, K. A., Jahan, N., Atikullah, M., Uddin, M. N., Naser, A. M., Faruk-E-Azam, A. K. M., & Islam, M. S. (2022b). Soil salinity mitigation by naturally grown halophytes in seawater affected coastal Bangladesh. International Journal of Environmental Science and Technology., 19, 11013–11022. https://doi.org/10.1007/s13762-022-03912-7

    Article  CAS  Google Scholar 

  • Islam, A. R. M. T., Mia, M. Y., Haque, M. E., Jannat, J. N., Jion, M. M. M. F., Islam, M. S., Siddique, M. A. B., Idris, A. M., Senapathi, V., Talukdar, S., & Rahman, A. (2023). Analysis of self-organizing maps and explainable artificial intelligence to identify hydrochemical factors that drive drinking water quality in Haor region. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2023.166927

    Article  Google Scholar 

  • Islam, A. R. M. T., Shen, S., Bodrud-Doza, M., Atiqur Rahman, M., & Das, S. (2017a). Assessment of trace elements of groundwater and their spatial distribution in Rangpur district, Bangladesh. Arabian Journal of Geosciences, 10(4). https://doi.org/10.1007/s12517-017-2886-3

  • Islam, M.S., Akter, R., Rahman, M.M., Kurasaki, M. 2022c. Phytoremediation: Background, principle, and application, plant species used for phytoremediation. In: Tanaka, S., Kurasaki, M., Morikawa, M., Kamiya, Y. (eds) Design of materials and technologies for environmental remediation. The handbook of environmental chemistry, vol 115:199–224, Springer, Singapore. https://doi.org/10.1007/698_2021_831

  • Jannat, J. N., Khan, M. S. I., Islam, H. T., Islam, M. S., Khan, R., Siddique, M. A. B., Varol, M., Tokatli, C., Pal, S. C., Islam, A., Idris, A. M., Malafia, G., & Islam, A. R. M. T. (2022). Hydrochemical assessment of fluoride and nitrate in groundwater from east and west coasts of Bangladesh and India. Journal of Cleaner Production, 372, 133675.

    Article  CAS  Google Scholar 

  • Karanth, K. R. (1987). Groundwater assessment, development and management. Tata McGraw-Hill Publishing Company.

  • Kelley, W. P. (1963). Use of saline irrigation water. Soil Science, 95, 355–391.

    Article  Google Scholar 

  • Latifa, G. A., Majumder, K. A., Kabir, M. H., & Chakma, A. (2019). Water quality and fish diversity of Chengi river of Khagrachhari district. Bangladesh Journal of Zoology, 47(2), 343–353.

    Article  Google Scholar 

  • Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3), 228–241. https://doi.org/10.1016/j.ecoinf.2010.12.003

    Article  Google Scholar 

  • Li, P., Wu, J., Qian, H., et al. (2014). Origin and assessment of groundwater pollution and associated health risk: A case study in an industrial park, northwest China. Environmental Geochemistry and Health, 36(4), 693–712.

    Article  CAS  Google Scholar 

  • Li, P., He, S., Yang, N., & **ang, G. (2018). Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: Implications to sustainable groundwater quality management on the Loess Plateau. Environmental Earth Sciences, 77, 1–16.

    Article  Google Scholar 

  • Mallik, S., Mishra, U., & Paul, N. (2021). Groundwater suitability analysis for drinking using GIS based fuzzy logic. Ecological Indicators, 121, 107179. https://doi.org/10.1016/j.ecolind.2020.107179

    Article  CAS  Google Scholar 

  • Mckone, T.E., Deshpande, A.W., 2005. Can fuzzy logic bring complex environmental problems into focus? Environmental Science & Technology 39. https://doi.org/10.1021/es0531632.

  • Mia, M. Y., Islam, A. R. M. T., Jannat, J. N., Jion, M. M. M. F., Sarker, A., Tokatli, C., Siddique, M. A. B., Ibrahim, S. M., & Senapathi, V. (2023). Identifying factors affecting irrigation metrics in the Haor basin using integrated Shannon’s entropy, fuzzy logic and automatic linear model. Environmental Research, 115688. https://doi.org/10.1016/j.envres.2023.115688

  • Mostafa, M. G., Uddin, S. H., & Haque, A. B. M. H. (2017). Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh. Applied Water Science, 7, 4663–4671.

    Article  CAS  Google Scholar 

  • Naser A.M., Rahman M., Unicomb L., Parvez S.M., Islam M.S., Doza S., Khan G.K., Ahmed K.M., Anand S., Luby S.P., Shamsudduha M., Gribble M.O., Narayan K.M.V., Clasen T.F. 2020. Associations of drinking rainwater with macro-mineral intake and cardiometabolic health: A pooled cohort analysis in Bangladesh, 2016–2019. NPJ Clean Water, 3:20 https://doi.org/10.1038/s41545-020-0067-5

  • Nepolian, M., Chidambaram, S., Thivya, C., Paramaguru, P., Pradeep, K., Panda, Banaja Rani, & D. N., & Vasudevan, U. (2016). Assessment of hydrogeochemical and quality studies in groundwater of Villupuram District, Tamilnadu, India. BDL, 116, 10–95.

  • Nizam, M. U., Shariful, I. M., & Islam, M. S. (2010). Quality assessment of surface water resources of Dumki upazila in Bangladesh for irrigation, aquaculture and livestock consumption. Journal of Agroforestry and Environment, 4, 81–84.

    Google Scholar 

  • Nuruzzaman, M. (2019). Chemical status of surface water of Bauphal Upazila for irrigation, aquaculture, livestock consumption and industrial uses. MS thesis, department of post harvest technology and marketing. Patuakhali Science and Technology University.

  • Okorogbona, A. O., Denner, F. D., Managa, L. R., Khosa, T. B., Maduwa, K., Adebola, P. O., Amoo, S. O., Ngobeni, H. M., & Macevele, S. (2018). Water quality impacts on agricultural productivity and environment. Sustainable Agriculture Reviews, 27, 1–35.

    Article  Google Scholar 

  • Paliwal, K. V. (1972). Irrigation with saline water. Monogram No.2 (New Series) (p. 198). Water Technology Centre.

    Google Scholar 

  • Paquette, C., Gregory-Eaves, I., & Beisner, B. E. (2022). Environmental drivers of taxonomic and functional variation in zooplankton diversity and composition in freshwater lakes across Canadian continental watersheds. Limnology and Oceanography, 67(5), 1081–1097.

    Article  Google Scholar 

  • Pathak, D. R., & Bhandary, N. P. (2020). Evaluation of groundwater vulnerability to nitrate in shallow aquifer using multi-layer fuzzy inference system within GIS environment. Groundwater for Sustainable Development, 11, 100470. https://doi.org/10.1016/j.gsd.2020.100470

    Article  Google Scholar 

  • Paul, R., Brindha, K., Gowrisankar, G., Tan, M. L., & Singh, M. K. (2019). Identification of hydrogeochemical processes controlling groundwater quality in Tripura, Northeast India using evaluation indices, GIS, and multivariate statistical methods. Environmental Earth Sciences, 78, 1–16.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Hameed, A. S., & Srinivasamoorthy, K. (2011). Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu India. Journal of Earth System Science, 120(1), 85–98.

    Article  CAS  Google Scholar 

  • Rahman, M. S., Saha, N., Islam, A. T., Shen, S., & Bodrud-Doza, M. (2017). Evaluation of water quality for sustainable agriculture in Bangladesh. Water, Air, & Soil Pollution, 228, 1–16.

    Google Scholar 

  • Rao, N. S., Dinakar, A., Sravanthi, M., et al. (2021). Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 28, 31941–31961. https://doi.org/10.1007/s11356-021-12404-z

    Article  CAS  Google Scholar 

  • Rao, N. S., Dinakar, A., & Sun, L. (2022a). Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover–A case study. Journal of Contaminant Hydrology, 248, 103990.

    Article  Google Scholar 

  • Rao, N. S., Sunitha, B., Das, R., & Kumar, B. A. (2022b). Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Physics and Chemistry of the Earth, Parts a/b/c, 128, 103228.

    Article  Google Scholar 

  • Rao, N. S., Das, R., Sahoo, H. K., & Gugulothu, S. (2024). Hydrochemical characterization and water quality perspectives for groundwater management for urban development. Groundwater for Sustainable Development, 24, 101071.

    Article  Google Scholar 

  • Ravindra, B., Subba Rao, N., & Dhanamjaya Rao, E. N. (2023). Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India. Environment, Development and Sustainability, 25, 14785–14815. https://doi.org/10.1007/s10668-022-02689-6

    Article  Google Scholar 

  • Richards, L. A. (Ed.) (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Government Printing Office.

  • Salam, M. A., Rahman, S., Anik, A. R., & Sharna, S. C. (2023). Exploring competitiveness of surface water versus ground water irrigation and their impacts on rice productivity and efficiency: An empirical analysis from Bangladesh. Agricultural Water Management, 283, 108298.

    Article  Google Scholar 

  • Sasikala, K. R., & Petrou, M. (2001). Generalised fuzzy aggregation in estimating the risk of desertification of a burned forest. Fuzzy Sets and Systems, 118(1), 121–137.

    Article  Google Scholar 

  • Shao, Z., Huq, M. E., Cai, B., Altan, O., & Li, Y. (2020). Integrated remote sensing and GIS approach using fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province. Environmental Modelling & Software., 134, 104868. https://doi.org/10.1016/j.envsoft.2020.104868

    Article  Google Scholar 

  • Sharma, D., Tiwari, A., Sood, S., Meher, P. K., & Kumar, A. (2022). Identification and validation of candidate genes for high calcium content in finger millet [Eleusine coracana (L) Gaertn] through genome-wide association study. Journal of Cereal Science, 107, 103517.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2018). Groundwater quality from a part of Prakasam District, Andhra Pradesh India. Applied Water Science, 8, 30. https://doi.org/10.1007/s13201-018-0665-2

    Article  CAS  Google Scholar 

  • Tandon, H. L. S. (1995). Methods of analysis of soils, plants, waters, fertilisers & organic manures. Fertiliser development and consultation organisation.

  • Thapa, R., Gupta, S., Reddy, D. V., et al. (2017). An evaluation of irrigation water suitability in the Dwarka river basin through the use of GIS-based modelling. Environment and Earth Science, 76, 471.

    Article  Google Scholar 

  • Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., Anandhan, P., & Jainab, I. (2013). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability, 15, 1365–1387.

    Article  Google Scholar 

  • Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons.

    Google Scholar 

  • Trivedy, P. K., & Goel, P. K. (2006). Chemical and biological methods for water pollution studies. Environmental publications.

    Google Scholar 

  • Uddin, M., Alam, M., Mobin, M., & Miah, M. (2014). An assessment of the river water quality parameters: A case of Jamuna River. Journal of Environmental Science, 7(1), 249–256.

    Google Scholar 

  • United News of Bangladesh. (2019). Acute water scarcity in Khagrachhari district, United News of Bangladesh, Khagrachhari. Published: 12:35. https://www.newagebd.net/article/71522/acute-water-scarcity-in-khagrachhari.

  • Venkatramanan, S., Chung, S. Y., Rajesh, R., Lee, S. Y., Ramkumar, T., & Prasanna, M. V. (2015). Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grou** analysis, and fuzzy set method using GIS platform: A case study of Dalcheon in Ulsan CityKorea. Environmental Science and Pollution Research, 22, 11209–11223. https://doi.org/10.1007/s11356-015-4290-4

    Article  CAS  Google Scholar 

  • Wang, B., Feng, P., Li Liu, D., & Waters, C. (2020). Modelling biophysical vulnerability of wheat to future climate change: A case study in the eastern Australian wheat belt. Ecological Indicators, 114, 106290.

    Article  Google Scholar 

  • WHO (World Health Organization). (2022). Guidelines for drinking-water quality. Incorporating first and second addenda (4th ed.). Geneva. https://www.who.int/publications/i/item/9789240045064

  • Wilcox, L. V. (1955). Classifcation and use of irrigation waters. US Department of Agriculture.

    Google Scholar 

  • Wu, Y.-H. (Eva), Hung, M.-C., Wu, Y.-H. (Eva), & Hung, M.-C. (2016). Comparison of spatial interpolation techniques using visualization and quantitative assessment. In Applications of Spatial Statistics. IntechOpen. https://doi.org/10.5772/65996

  • Zadeh, L. A. (1965). Fuzzy sets. Institute of Electrical and Electronic Engineering Information and Control, 8, 338–353.

    Google Scholar 

  • Zaman, M. W., & Rahman, M. M. (1996). Ionic toxicity of industrial process waters in someselected sites off’ Sirajgonj in Bangladesh. Bangladesh Journal of Environmental Sciences., 2, 27–34.

    Google Scholar 

  • Zhang, Y., Wang, Z., Liu, Y., Zhang, T., Liu, J., You, Z., & Wang, C. (2023). Plasma membrane-associated calcium signaling modulates cadmium transport. New Phytologist, 238(1), 313–331. https://doi.org/10.1111/nph.18698

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported (partially) by Research and Training Center (RTC), Patuakhali Science and Technology University (PSTU), Dumki, Patuakhali-8602, Bangladesh. Md. Shariful Islam has received the research support and partial grant from PSTU to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Md. Shariful Islam, Udoy Jibon Tripura, Md. Saiful Islam, Abu Reza Md. Towfiqul Islam, S. M. Rabbi Al Zihad, and Mst. Moriom Khatun. The first draft of the manuscript was written by Udoy Jibon Tripura, Md. Mahadi Hasan, and Tuba Yasmin Lubna and all authors commented on previous versions of the manuscript. All authors read, review, and approved the final manuscript.

Corresponding author

Correspondence to Md. Shariful Islam.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M., Tripura, U.J., Islam, M.S. et al. Appraising water resources for irrigation and spatial analysis based on fuzzy logic model in the tribal-prone areas of Bangladesh. Environ Monit Assess 196, 641 (2024). https://doi.org/10.1007/s10661-024-12799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12799-5

Keywords

Navigation