Log in

Longitudinal assessment of extreme climate events in Kinnaur district, Himachal Pradesh, north-western Himalaya, India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

It is vital to keep an eye on changes in climatic extremes because they set the stage for current and potential future climate, which usually have a reasonable adverse impact on ecosystems and society. The present study examines the variability and trends in precipitation and temperature across seasons in the Kinnaur district, offering valuable insights into the complex dynamics of the Himalayan climate. Using Climatic Research Unit gridded Time Series (CRU TS) datasets from 1951 to 2021, the study analyzes the data to produce 28 climate indices based on India Meteorological Department (IMD) convention indices and Expert Team on Climate Change Detection and Indices (ETCCDI). Although there may be considerable variation in climate indices in terms of absolute values within different products, there is consensus in both long-term trends and inter-annual variability. Analysis shows that even within a small area, there is variability in the magnitude and direction of historic temperature trends. Initially, the data were subjected to rigorous quality control procedures, which involved identifying anomalies. Statistical analysis like trend analysis, employing Mann–Kendall test and Sen’s slope estimator, reveal significant (p < 0.05) increase in consecutive dry days (CDD) at 0.03 days/year and decrease in consecutive wet days (CWD) at 0.02 days/year. Notably, the frequency of heavy precipitation occurrences showed an increasing trend. Changes in precipitation in the Western Himalaya are driven by a complex interplay of orographic effects, monsoonal dynamics, atmospheric circulation patterns, climate change, and localized factors such as topography, atmospheric circulation patterns, moisture sources, land-sea temperature contrasts, and anthropogenic influences. Moreover, in case of temperature indices, there is significant increasing trend observed. Temperature indices indicate a significant annual increase in warm nights (TN90p) at 0.06%/year and warm days (TX90p) at 0.11%/year. Extreme temperature events have been trending upward, with monthly daily maximum temperature (TXx) increasing by 1.5 °C yearly. This study enhances our comprehension of the global warming phenomenon and underscores the importance of acknowledging alterations in the water cycle and their repercussions on hydrologic resources, agriculture, and livelihoods in the cold desert of the northwestern Indian Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its supplementary file information.

References

  • Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

    Article  Google Scholar 

  • Ahmad, I., Tang, D., Wang, T., Wang, M., Wagan, B. (2014). Precipitation trends over time using Mann-Kendall and Spearman’s rho tests in Swat River Basin, Pakistan. Advances in Meteorology, 1–15. https://doi.org/10.1155/2015/431860.

  • Alexander, L. V., Zhang, X., Peterson, T., Caesar, J., Gleason, B., Klein Tank, A. M. G., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5), 1–22. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  • Anh, D. L. T., Anh, N. T., & Chandio, A. A. (2023). Climate change and its impacts on Vietnam agriculture: A macroeconomic perspective. Ecological Informatics, 74, 101960.

    Article  Google Scholar 

  • Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke, J., et al. (2023). Intergovernmental Panel on Climate Change (IPCC). Technical summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 35–144). Cambridge University Press.

  • Arndt, D. S., Baringer, M. O., & Johnson, M. R. (2010). State of the climate in 2009. Bulletin of the American Meteorological Society, 91, 221–224. https://doi.org/10.1175/BAMS-91-7-StateoftheClimate

    Article  Google Scholar 

  • Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate ExtremEs, 19, 29–41. https://doi.org/10.1016/J.WACE.2017.12.002

    Article  Google Scholar 

  • Atkinson, E. T. (1970). The Himalayan Gazetteer. Natraj Publishers,pp. 2631.

  • Banerjee, A., Chen, R., Meadows, M. E., Singh, R. B., Mal, S., & Sengupta, D. (2020). An analysis of long-term rainfall trends and variability in the uttarakhand himalaya using google earth engine. Remote Sensing, 12(4), 709. https://doi.org/10.3390/rs12040709

    Article  Google Scholar 

  • Banerjee, A., Chen, R., Meadows, M. E., Sengupta, D., Pathak, S., **a, Z., & Mal, S. (2021). Tracking 21st century climate dynamics of the Third Pole: An analysis of topo-climate impacts on snow cover in the central Himalaya using Google Earth Engine. International Journal of Applied Earth Observations and Geoinformation, 103, 102490. https://doi.org/10.1016/j.jag.2021.102490

    Article  Google Scholar 

  • Banerjee, A., Kand, S., Meadows, M. E., Sajjad, W., Bahadur, A., Ul Moazzam, M. F., **a, Z., Mango, M., et al. (2024a). Evaluating the relative influence of climate and human activities on recent vegetation dynamics in West Bengal, India. Environmental Research, 250, 118450. https://doi.org/10.1016/j.envres.2024.118450

    Article  CAS  Google Scholar 

  • Banerjee, A., Kang, S., Guo, W., Meadows, M. E., Sengupta, D., & Zhang, T. (2024b). Glacier retreat and lake outburst floods in the central Himalayan region from 2000 to 2022. Natural Hazards, 120, 5485–5508. https://doi.org/10.1007/s11069-024-06415-5

    Article  Google Scholar 

  • Bhan, S. C., & Singh, M. (2011). Analysis of total precipitation and snowfall patterns over Kinnaur. Journal of Agrometeorology, 13(2), 141–44. https://doi.org/10.54386/jam.v13i2.1360

    Article  Google Scholar 

  • Bhardwaj, A., Wasson, R. J., Chow, W. T. L. & Ziegler, A. D. (2021). High-intensity monsoon rainfall variability and its attributes: a case study for Upper Ganges Catchment in the Indian Himalaya during 1901–2013. Natural Hazards, 105 (3), 2907–2936. http://springer.longhoe.net/10.1007/s11069-020-04431-9

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends inmaximum, minimum and mean annual air temperatures acrossthe northwestern Himalaya during the twentieth century. Climate Change, 85, 159–177. https://doi.org/10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Bocchiola, D., & Diolaiuti, G. (2013). Recent (1980–2009) evidence ofclimate change in the upper Karakoram, Pakistan. Theoretical and Applied Climatology, 113, 611–641. https://doi.org/10.1007/s00704-012-0803-y

    Article  Google Scholar 

  • Brown, P. J., Bradley, R. S., & Keimig, F. T. (2010). Changes in extreme climate indices for the northeastern United States, 1870–2005. Journal of Climate, 23(24), 6555–6572.

    Article  Google Scholar 

  • Census of India. (2011). Himachal Pradesh District Census Handbook Kinnaur (pp. 44–48). Himachal Pradesh: Directorate of Census operations.

    Google Scholar 

  • Chawla, I., Osuri, K. K., Mujumdar, P. P., & Niyogi, D. (2018). Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrology and Earth System Sciences, 22(2), 1095–1117. https://doi.org/10.5194/HESS-22-1095-2018

    Article  Google Scholar 

  • Dodge, Y. (2008). The concise encyclopaedia of statistics (pp. 97). Springer.

    Google Scholar 

  • Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., et al. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres, 118(5), 2098–2118. https://doi.org/10.1002/jgrd.50150

    Article  Google Scholar 

  • Drapela, K., & Drapelova, I. (2011). Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kˇríž (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy, 4(2), 133–146. ISSN:1803-2451.

    Google Scholar 

  • Fowler, H. J., & Archer, D. R. (2006). Conflicting signals of climatic changein the upper Indus basin. Journal of Climate, 19(17), 4276–4293. https://doi.org/10.1175/JCLI3860.1

    Article  Google Scholar 

  • Gehlot, L. K., Jibhakate, S. M., Sharma, P. J., Patel, P. L., & Timbadiya, P. V. (2021). Spatio-temporal variability of rainfall indices and their teleconnections with El Niño-Southern oscillation for Tapi Basin. India. Asia-Pacific Journal of Atmospheric Sciences, 57(1), 99–118. https://doi.org/10.1007/s13143-020-00179-1

    Article  Google Scholar 

  • Goyal, M. K., Poonia, V., & Jain, V. (2023). Three decadal urban drought variability risk assessment for Indian smart cities. Journal of Hydrology, 625, 130056. https://doi.org/10.1016/j.jhydrol.2023.130056

    Article  Google Scholar 

  • Guhathakurta, P., Narkhede, N., Menon, P., Prasad, A. K., & Sangwan, N. (2020). Observed rainfall variability and changes over Himachal Pradesh state. Met Monograph No. ESSO/IMD/HS/Rainfall variability/ 10(2020)/34. Indian Meteorological Department, Ministry of Earth Sciences, Pune.

  • Harris, I., Osborn, T.J., Jones, P. & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(109). https://doi.org/10.1038/s41597-020-0453-3.

  • Hoerling, M., & Kumar, A. (2003). Perfect ocean for drought. Science, 299, 691–694. https://doi.org/10.1126/science.1079053

    Article  CAS  Google Scholar 

  • Himachal Pradesh Development Report. (2005). Agriculture, Himachal Pradesh Development Report. Planning Commission, Government of India, New Delhi, pp. 207–224.

  • IPCC, et al. (2007). Contribution of working group I to the fourth assessment report ofthe intergovernmental panel on climate change. In D. Qin, M. Manning, Z. Chen, & M. Marquis (Eds.), Solomon S. Cambridge Univ Press.

    Google Scholar 

  • IPCC. (2021) Summary for Policymakers; In: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.In Masson-Del-motte V, Zhai P, Pirani A, Connors S L, Pean C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, WaterBeld T, Yelekci O, Yu R and Zhou B (Eds.), Cambridge University Press pp. 3–32. https://doi.org/10.1017/9781009157896.001

  • Jaswal, A. K., Karandikar, A. S., Gujar, M. K., & Bhan, S. C. (2015). Seasonal and annual rainfall trends in Himachal Pradesh during 1951–2005. Mausam, 66, 247–264.

    Article  Google Scholar 

  • Kad, P., & Ha, K. J. (2023). Recent tangible natural variability of monsoonal orographic rainfall in the Eastern Himalayas. Journal of Geophysical Research: Atmospheres, 128(22), e2023JD038759. https://doi.org/10.1029/2023JD038759

    Article  Google Scholar 

  • Kalita, R., Kalita, D., & Saxena, A. (2023). Trends in extreme climate indices in Cherrapunji for the period 1979 to 2020. Journal of Earth System Science, 132(74), 1–13. https://doi.org/10.1007/s12040-023-02087-0

    Article  Google Scholar 

  • Kanwar, N., & Kuniyal, J. C. (2022). Vulnerability assessment of forest ecosystems focusing on climate change, hazards and anthropogenic pressures in the cold desert of Kinnaur district, northwestern Indian Himalaya. Journal of Earth System Science, 131, 51. https://doi.org/10.1007/s12040-021-01775-z

    Article  Google Scholar 

  • Karl, T. R., Nicholls, N., & Ghazi, A. (1999). CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: Workshop summary. Climatic Change, 42, 3–7. https://doi.org/10.1023/A:1005491526870

    Article  Google Scholar 

  • Kazemzadeh, M., Hashemi, H., Jamali, S., Uvo, C. B., Berndtsson, R. & Huffman, G. J. (2021). Linear and nonlinear trend analyzes in global satellite-based precipitation, 1998–2017. Earth’s Future, 9 (4), e2020EF001835. https://doi.org/10.1029/2020EF001835

  • Kendall, M. G. (1945). Rank correlation methods. Hafner Publishing Company.

    Google Scholar 

  • Khattak, M. S., Babel, M. S., & Sharif, M. (2011). Hydro-meteorological trendsin the upper Indus river basin in Pakistan. Climate Research, 46, 103–109. https://doi.org/10.3354/cr00957

    Article  Google Scholar 

  • Kothawale, D. R., Revadekar, J. V., & Kumar, K. R. (2010). Recent trends in pre-monsoon daily temperature extremes over India. Journal of Earth System Science, 119(1), 51–65. https://doi.org/10.1007/s12040-010-0008-7

    Article  Google Scholar 

  • Kumar, A., Kumar, S., Rautela, K. S., Kumari, A., Shekhar, S., & Thangavel, M. (2023a). Exploring temperature dynamics in Madhya Pradesh: A spatial-temporal analysis. Environmental Monitoring and Assessment, 195(11), 1313. https://doi.org/10.1007/s10661-023-11884-5

    Article  Google Scholar 

  • Kumar, A., Kumar, S., Rautela, K. S., Shekhar, S., Ray, T., & Thangavel, M. (2023b). Assessing seasonal variation and trends in rainfall patterns of Madhya Pradesh, Central India. Journal of Water and Climate Change, 14(10), 3692–3712. https://doi.org/10.2166/wcc.2023.280

    Article  Google Scholar 

  • Kumar, N., Patel, P., Singh, S., & Goyal, M. K. (2023c). Understanding non-stationarity of hydroclimatic extremes and resilience in Peninsular catchments, India. Scientific Reports, 13(1), 12524. https://doi.org/10.1038/s41598-023-38771-w

    Article  CAS  Google Scholar 

  • Kumar, M., Tiwari, R. K., Kumar, K., Rautela, K. S., & Safi, S. (2024). Quantitative analysis of hydropower potential in the upper Beas basin using geographical information system and MIKE 11 Nedbor Afrstromnings Model (NAM). Ecohydrology, e2618. https://doi.org/10.1002/eco.2618

  • Kumar, N., Poonia, V., Gupta, B. B., & Goyal, M. K. (2021). A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technological Forecasting and Social Change, 165, 120532. https://doi.org/10.1016/j.techfore.2020.120532

    Article  Google Scholar 

  • Kumar, N., Yadav, B. P., Gahlot, S., & Singh, M. (2015). Winter frequency of western disturbances and precipitation indices over Himachal Pradesh, India: 1977–2007. Atmosfera, 28(1), 67–74. https://doi.org/10.1016/S0187-6236(15)72160-0

    Article  Google Scholar 

  • Kumar, V., & Jain, S. K. (2009). Trends in seasonal and annual rainfall and rainy days in Kashmir valley in the last century. Quaternary International, 212(1), 64–69. https://doi.org/10.1016/j.quaint.2009.08.006

    Article  Google Scholar 

  • Kuniyal, J. C., Kanwar, N., Bhoj, A. S., Rautela, K. S., Joshi, P., Kumar, K., Sofi, M. S., Bhat, S. U., Rashid, I., Lodhi, M. S., Devi, C. A., & Singh, H. B. (2021). Climate change impacts on glacier-fed and non-glacier-fed ecosystems of the Indian Himalayan Region: People’s perception and adaptive strategies. Current Science, 120(5), 888–899.

    Article  Google Scholar 

  • Kuniyal, J. C., Jamwal, A., Kanwar, N., Chand, B., Kumar, K., & Dhyani, P. P. (2019). Vulnerability assessment of the Satluj catchment for sustainable development of hydroelectric projects in the northwestern Himalaya. Journal of Mountain Science, 16(12), 2714–2738. https://doi.org/10.1007/s11629-017-4653-z

    Article  Google Scholar 

  • Leal Filho, W., Nagy, G. J., Setti, A. F. F., Sharifi, A., Donkor, F. K., Batista, K., & Djekic, I. (2023). Handling the impacts of climate change on soil biodiversity. Science of The Total Environment, 869, 161671. https://doi.org/10.1016/j.scitotenv.2023.161671

    Article  CAS  Google Scholar 

  • Longobardi, A., & Villani, P. (2009). Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology, 30, 1538–1546. https://doi.org/10.1002/joc.2001

    Article  Google Scholar 

  • Mahmood, R., & Jia, S. (2017). Spatial and temporal hydro-climatic trends in the transboundary Jhelum River basin. Journal of Water Climate Change, 8, 423–440. https://doi.org/10.2166/WCC.2017.005

    Article  Google Scholar 

  • Mal, S., Arora, M., Banerjee, A., Singh, R. B., Scott, C. A., Allen, S. K., & Karki, R. (2022). Spatial Variations and Long-Term Trends (1901–2013) of Rainfall Across Uttarakhand Himalaya, India. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_3

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrical, 13(3), 245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Manzoor, S., & Ahanger, M. A. (2022). Spatio-temporal trends in precipitation and temperature means/extremes in the Himalayan states of India. Journal of Water & Climate Change, 13(7), 2531. https://doi.org/10.2166/wcc.2022.395

    Article  Google Scholar 

  • Maussion, F., Scherer, D., Molg, T., Collier, E., Curio, J., & Finkelnburg, R. (2014). Pre- cipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. Journal of Climatelogy, 27, 1910e1927. https://doi.org/10.1175/JCLI-D-13-00282.1

    Article  Google Scholar 

  • Mishra, R. K. (2023). Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3), 1–78. https://doi.org/10.37745/bjmas.2022.0208

    Article  CAS  Google Scholar 

  • Mohan, M.A., Khanduri, V.S., Srivastava, A. (2021). August, 2019 Landslide events in Kinnaur, H.P.—An assessment of earthquake and landslide consequences using satellite data. In: Sitharam, T.G., Jakka, R., Govindaraju, L. (Eds.), Local Site Effects and Ground Failures. Lecture Notes in Civil Engineering, vol 117. Springer. https://doi.org/10.1007/978-981-15-9984-2_16.

  • Mudelsee, M. (2019). Trend analysis of climate time series: A review of methods. Earth-Science Reviews, 190, 310–322. https://doi.org/10.1016/j.earscirev.2018.12.005

    Article  Google Scholar 

  • Negi, H.S., & Kanda, N. (2020). An appraisal of spatio-temporal characteristics of temperature and precipitation using gridded datasets over NW- Himalaya. In P. S. Goel, R. Ravindra, S. Chattopadhyay (Eds.), Climate Change and the White World (pp. 219–238). Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-21679-5_14

  • Okafor, G. C., Jimoh, O., & Larbi, K. I. (2017). Detecting changes in hydro-climatic variables during the last four decades (1975–2014) on Downstream Kaduna River Catchment Nigeria. Atmospheric and Climate Science, 7(2), 161. https://doi.org/10.4236/acs.2017.72012

    Article  Google Scholar 

  • Peterson, T.C., Folland, C., Gruza, G., Hogg, W., Mokssit, A., & Plummer, N. (2001). Report on the activities of the working group on climate change detection and related rapporteurs. WMO, Rep.WCDMP-47, WMO-TD 1071, pp. 143.

  • Poonia, V., Goyal, M. K., Gupta, B. B., Gupta, A. K., Jha, S., & Das, J. (2021). Drought occurrence in different river basins of India and blockchain technology based framework for disaster management. Journal of Cleaner Production, 312, 127737. https://doi.org/10.1016/j.jclepro.2021.127737

    Article  Google Scholar 

  • Pradhan, R. K., Sharma, D., Panda, S. K., Dubey, S. K., & Sharma, A. (2019). Changes of precipitation regime and its indices over Rajasthan state of India: Impact of climate change scenarios experiments. Climate Dynamics, 52(5–6), 3405–3420. https://doi.org/10.1007/s00382-018-4334-9

    Article  Google Scholar 

  • Rahim, A., Wang, X., Javed, N., Aziz, F., Jahangir, A., & Khurshid, T. (2023). Early 21st century trends of temperature extremes over the northwest Himalayas. Atmosphere, 14, 454. https://doi.org/10.3390/atmos14030454

    Article  Google Scholar 

  • Raihan, A. (2023). A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. Journal of Environmental Science and Economics, 2(3), 36–58. https://doi.org/10.56556/jescae.v2i3.587

    Article  Google Scholar 

  • Rakkasagi, S., Poonia, V., & Goyal, M. K. (2023). Flash drought as a new climate threat: drought indices, insights from a study in India and implications for future research. Journal of Water and Climate Change, 14(9), 3368–3384. https://doi.org/10.2166/wcc.2023.347

    Article  Google Scholar 

  • Rautela, K. S., Kumar, D., Gandhi, B. G. R., Kumar, A., Dubey, A. K., & Khati, B. S. (2023). Evaluating hydroelectric potential in Alaknanda basin, Uttarakhand using the snowmelt runoff model (SRM). Journal of Water and Climate Change, 14(11), 4146–4161. https://doi.org/10.2166/wcc.2023.341

    Article  Google Scholar 

  • Rautela, K. S., Kuniyal, J. C., Alam, M. A., Bhoj, A. S., & Kanwar, N. (2022). Assessment of daily streamflow, sediment fluxes, and erosion rate of a pro-glacial stream basin, Central Himalaya, Uttarakhand. Water, Air, & Soil Pollution, 233(4), 136. https://doi.org/10.1007/s11270-022-05567-z

    Article  CAS  Google Scholar 

  • Rautela, K. S., Kuniyal, J. C., Goyal, M. K., Kanwar, N., & Bhoj, A. S. (2024a). Assessment and modelling of hydrosedimentological flows of the eastern river Dhauliganga, north-western Himalaya, India. Natural Hazards, 1–25. https://doi.org/10.1007/s11069-024-06413-7

  • Rautela, K. S., Singh, S., & Goyal, M. K. (2024b). Characterizing the spatio-temporal distribution, detection, and prediction of aerosol atmospheric rivers on a global scale. Journal of Environmental Management, 351, 119675. https://doi.org/10.1016/j.jenvman.2023.119675

  • Rehana, S., Yeleswarapu, P., Basha, G., & Munoz-Arriola, F. (2022). Precipitation and temperature extremes and association with large-scale climate indices: An observational evidence over India. Journal of Earth System Science, 131(3), 170. https://doi.org/10.1007/s12040-022-01911-3

    Article  Google Scholar 

  • Roxy, M. K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., Terray, P., & Rajeevan, M. (2017). A threefold rise in widespread extreme rain events over central India. Nature communications, 8(1), 708. https://doi.org/10.1038/s41467-017-00744-9

    Article  CAS  Google Scholar 

  • Roy, S. S., & Balling, R. C. (2004). Trends in extreme daily precipitation indices in India. Int. Journal of Climatology, 24(4), 457–466. https://doi.org/10.1002/joc.995

    Article  Google Scholar 

  • Salami, A., Ikpee, O., Ibitoye, A., & Oritola, S. (2016). Trend analysis of hydro-meteorological variables in the coastal area of Lagos using Mann-Kendall trend and standard anomaly index methods. Journal of Applied Sciences and Environmental Management, 20, 797–808. https://doi.org/10.4314/jasem.v20i3.34

    Article  Google Scholar 

  • Sen, P. K. (2012). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(1968), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Sharma, A., Sharma, D., Panda, S. K., Dubey, S. K., & Pradhan, R. K. (2018). Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Global and Planetary Change, 161, 82–96. https://doi.org/10.1016/j.gloplacha.2017.12.008

    Article  Google Scholar 

  • Sharma, A., Sharma, D., & Panda, S. K. (2022). Assessment of spatiotemporal trend of precipitation indices and meteorological drought characteristics in the Mahi River basin. India. Journal of Hydrology., 605, 127314. https://doi.org/10.1016/j.jhydrol.2021.127314

    Article  Google Scholar 

  • Sharma, K., Moore, B., & Vorosmarty, C. (2000). Anthropogenic, climatic, andhydrologic trends in the Koshi basin. Himalaya. Climate Change, 47(141–165), 35. https://doi.org/10.1023/A:1005696808953

    Article  Google Scholar 

  • Shawul, A. A., & Chakma, S. (2020). Trend of extreme precipitation indices and analysis of long-term climate variability in the Upper Awash basin, Ethiopia. Theoretical Applied Climatology, 140, 635–652. https://doi.org/10.1007/s00704-020-03112-8

    Article  Google Scholar 

  • Sheikh, M. M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S., et al. (2015). Trends in extreme daily rainfall and temperature indices over south Asia. International Journal of Climatology, 35, 1625–1637. https://doi.org/10.1002/joc.4081

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS one, 7(5), e36741. https://doi.org/10.1371/journal.pone.0036741

    Article  CAS  Google Scholar 

  • Singh, A., & Sharma, P. J. (2023). Evolving streamflow extremes in a changing climate for a Peninsular River Basin. In: Chembolu, V., Dutta, S. (Eds.), Advances in River Corridor Research and Applications. RCRM 2023. Lecture Notes in Civil Engineering, vol 470. Springer. https://doi.org/10.1007/978-981-97-1227-4_1

  • Singh, J., Park, W. K., & Yadav, R. R. (2006). Tree-ring-based hydrological records for western Himalaya, India, since AD 1560. Climate Dynamics, 26, 295–e303. https://doi.org/10.1007/s00382-005-0089-1

    Article  Google Scholar 

  • Singh, J., & Yadav, R. R. (2005). Spring precipitation variations over the western Himalaya, India since AD 1731 as deduced from tree rings. Journal of Geophysical Research: Atmospheres, 110, D01110. https://doi.org/10.1029/2004JD004855

    Article  Google Scholar 

  • Singh, S., & Goyal, M. K. (2023). Enhancing climate resilience in businesses: The role of artificial intelligence. Journal of Cleaner Production, 418, 138228. https://doi.org/10.1016/j.jclepro.2023.138228

    Article  Google Scholar 

  • Subash, N., & Sikka, A. K. (2014). Trend analysis of rainfall and temperature and its relationship over India. Theoretical and Applied Climatology, 117(3), 449–462. https://doi.org/10.1007/s00704-013-1015-9

    Article  Google Scholar 

  • Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Report, 10, 13768. https://doi.org/10.1038/s41598-020-70816-2

    Article  CAS  Google Scholar 

  • Teegavarapu, R. S., & Sharma, P. J. (2021). Influences of climate variability on regional precipitation and temperature associations. Hydrological Sciences Journal, 66(16), 2395–2414. https://doi.org/10.1080/02626667.2021.1994976

    Article  Google Scholar 

  • Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953

    Article  Google Scholar 

  • Tsesmelis, D. E., Leveidioti, I., Karavitis, C. A., Kalogeropoulos, K., Vasilakou, C. G., Tsatsaris, A., & Zervas, E. (2023). Spatiotemporal application of the standardized precipitation index (SPI) in the eastern Mediterranean. Climate, 11(5), 95. https://doi.org/10.3390/cli11050095

    Article  Google Scholar 

  • Walsh, J. E., Ballinger, T. J., Euskirchen, E. S., Hanna, E., Mard, J., Overland, J. E., Tangen, H., et al. (2020). Extreme weather and climate events in northern areas: A review. Earth-Science Reviews, 209, 103324. https://doi.org/10.1016/j.earscirev.2020.103324

    Article  Google Scholar 

  • Yadav, R. R. (2011). Long-term hydroclimatic variability in monsoon shadow zone of western Himalaya, India. Climate Dynamics, 36, 1453-e1462. https://doi.org/10.1007/s00382-010-0800-8

    Article  Google Scholar 

  • Yadav, R. R. (2013). Tree ring-based seven-century drought records for the Western Himalaya. India. Journal of Geophysical Research:Atmospheres, 118(10), 4318–43256. https://doi.org/10.1029/2010JD014647

    Article  Google Scholar 

  • Yadava, A. K., Brauning, A., Singh, J., & Yadav, R. R. (2016). Boreal spring precipitation variability in the cold arid western Himalaya during the last millennium, regional linkages, and socio-economic implications. Quaternary Science Reviews, 144, 28–43. https://doi.org/10.1016/j.quascirev.2016.05.008

    Article  Google Scholar 

  • Zhang, X., & Yang, F. (2004). RClimDex (1.0) user manual. Climate Research Branch Environment Canada Downsview, 23.

Download references

Acknowledgements

The authors express their sincere gratitude to the Director of G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora-263643, Uttarakhand, and the Head of the Department of Civil Engineering at Indian Institute of Technology Indore, Simrol, Indore-453552, Madhya Pradesh, for their generous provision of facilities. The authors acknowledge with thanks to DST and MoEFCC for the partial financial support to the projects titled, 'Forest Resources and Plant Biodiversity', NMSHE TF3, Second Phase  as well as 'Fostering climate smart communities in the Indian Himalayan Region', In-house Project No.03, respectively.   

Funding

DST and MoEF&CC provided partial financial support to the project activities titled, 'Forest Resources and Plant Biodiversity', NMSHE TF3, Second Phase  as well as 'Fostering climate smart communities in the Indian Himalayan Region', In-house project-03, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jagdish Chandra Kuniyal, Nidhi Kanwar; methodology: Nidhi Kanwar, Kuldeep Singh Rautela, Jagdish Chandra Kuniyal; formal analysis and investigation: Nidhi Kanwar; writing—original draft preparation: Nidhi Kanwar, Kuldeep Singh Rautela, Laxman Singh; writing—review and editing: Nidhi Kanwar, Kuldeep Singh Rautela, Jagdish Chandra Kuniyal, Laxman Singh, D.C. Pandey; supervision: Jagdish Chandra Kuniyal.

Corresponding author

Correspondence to Jagdish Chandra Kuniyal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwar, N., Kuniyal, J.C., Rautela, K.S. et al. Longitudinal assessment of extreme climate events in Kinnaur district, Himachal Pradesh, north-western Himalaya, India. Environ Monit Assess 196, 557 (2024). https://doi.org/10.1007/s10661-024-12693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12693-0

Keywords

Navigation