Log in

Climatic variables are more effective on the spatial distribution of oak forests than land use change across their historical range

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current research is conducted to model the effect of climate change and land use change (LUC) on the geographical distribution of Quercus brantii Lindl. (QB) forests across their historical range. Forecasting was done based on six general circulation models under RCP 2.6 and RCP 8.5 future climate change scenarios for the future years 2050 and 2070. In order to model the species distribution, different modeling methods were used. The results indicated that, in general, climatic variables had a higher influence on the distribution of QB than land use–related attributes. The mean diurnal range (bio2), the precipitation seasonality (bio15), and the mean temperature of the driest quarter (bio9) were the main predictors in the distribution of QB forests, while land use variables were less important in oak species distribution. The GBM, MaxEnt, and RF had higher accuracy and performance in modeling species distribution. The outputs also showed that in the current climate circumstances, 97,608.81 km2 of the studied area has high desirability for the presence of QB, and by 2070, under the pessimistic scenario, 96.29% of these habitats will be lost under the concomitant effect of LUC and climate change. By using the results of this research, it is possible to predict and identify the effective factors in changing the habitat of this oak species with more certainty. Based on the insights obtained from the results of such studies, the protection and restoration planning of the habitat of this key species, which supports diverse species, will be provided more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data in this study are available upon reasonable request to the corresponding author.

References

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010

    Article  Google Scholar 

  • Arslan, E. S., Akyol, A., Örücü, Ö. K., & Sarıkaya, A. G. (2020). Distribution of rose hip (Rosa canina L.) under current and future climate conditions. Regional Environmental Change, 20, 1–13. https://doi.org/10.1007/s10113-020-01695-6

    Article  Google Scholar 

  • Babalik, A. A., Sarikaya, O., & Orucu, O. K. (2021). The current and future compliance areas of Kermes Oak (Quercus coccifera L.) under climate change in Turkey. Fresenius Environmental Bulletin, 30, 406–413.

    CAS  Google Scholar 

  • Barbier, E. B. (2022). The policy implications of the Dasgupta review: Land use change and biodiversity: Invited Paper for the Special “Issue on The Economics of Biodiversity: Building on the Dasgupta Review.” Environmental and Resource, 83, 911–935. https://doi.org/10.1007/s10640-022-00658-1

  • Beygi Heidarlou, H., Banj Shafiei, A., Erfanian, M., Tayyebi, A., & Alijanpour, A. (2021). Land cover changes in Northern Zagros forests (Nw Iran) before and during implementation of energy policies. Journal of Sustainable Forestry, 40, 234–248. https://doi.org/10.1080/10549811.2020.1747026

    Article  Google Scholar 

  • Booth, T. H. (2018). Species distribution modelling tools and databases to assist managing forests under climate change. Forest Ecology and Management, 430, 196–203. https://doi.org/10.1016/j.foreco.2018.08.019

    Article  Google Scholar 

  • Briscoe Runquist, R. D., Lake, T., Tiffin, P., & Moeller, D. A. (2019). Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Scientific Reports, 9, 1–12. https://doi.org/10.1038/s41598-018-38054-9

    Article  Google Scholar 

  • Calambás-Trochez, L. F., Velazco, S. J. E., Hoffmann, P. M., Gurski, E. M., Brum, F. T., & Carlucci, M. B. (2021). Climate and land-use changes coupled with low coverage of protected areas threaten palm species in South Brazilian grasslands. Perspectives in Ecology and Conservation, 19, 345–353. https://doi.org/10.1016/j.pecon.2021.03.010

    Article  Google Scholar 

  • Carrillo-Angeles, I. G., Suzán-Azpiri, H., Mandujano, M. C., Golubov, J., & Martínez-Ávalos, J. G. (2016). Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). Journal of Arid Environments, 124, 310–317. https://doi.org/10.1016/j.jaridenv.2015.09.001

    Article  ADS  Google Scholar 

  • Chauvier, Y., Thuiller, W., Brun, P., Lavergne, S., Descombes, P., Karger, D. N., Renaud, J., & Zimmermann, N. E. (2021). Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecological Monographs, 91, e01433. https://doi.org/10.1002/ecm.1433

    Article  Google Scholar 

  • Chen, M., Vernon, C. R., Graham, N. T., Hejazi, M., Huang, M., Cheng, Y., & Calvin, K. (2020). Global land use for 2015–2100 at 0.05 resolution under diverse socioeconomic and climate scenarios. Scientific Data, 7, 1–11. https://doi.org/10.1038/s41597-020-00669-x

    Article  Google Scholar 

  • Çoban, H. O., Örücü, Ö. K., & Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 12, 2671. https://doi.org/10.3390/su12072671

    Article  Google Scholar 

  • Dai, Y., Peng, G., Wen, C., Zahoor, B., Ma, X., Hacker, C. E., & Xue, Y. (2021). Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Science of the Total Environment, 777, 146207. https://doi.org/10.1016/j.scitotenv.2021.146207

    Article  ADS  CAS  Google Scholar 

  • Di Febbraro, M., Menchetti, M., Russo, D., Ancillotto, L., Aloise, G., Roscioni, F., ... & Mori, E. (2019). Integrating climate and land‐use change scenarios in modelling the future spread of invasive squirrels in Italy. Diversity and Distributions, 25, 644–659.‏ https://doi.org/10.1111/ddi.12890

  • Fatemi, S. S., Rahimi, M., Tarkesh, M., & Ravanbakhsh, H. (2018). Predicting the impacts of climate change on the distribution of Juniperus excelsa M. Bieb. in the central and eastern Alborz Mountains Iran. Iforest-Biogeosciences and Forestry, 11, 643–650. https://doi.org/10.3832/ifor2559-011

    Article  Google Scholar 

  • Gong, X., Chen, Y., Wang, T., Jiang, X., Hu, X., & Feng, J. (2020). Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants. Science of the Total Environment, 740, 139933. https://doi.org/10.1016/j.scitotenv.2020.139933

    Article  ADS  PubMed  CAS  Google Scholar 

  • HamadAmin, B. A., & Khwarahm, N. R. (2023). Map** impacts of climate change on the distributions of two endemic tree species under socioeconomic pathway scenarios (SSP). Sustainability, 15, 5469. https://doi.org/10.3390/su15065469

    Article  Google Scholar 

  • Heydari, M., Poorbabaei, H., Bazgir, M., Salehi, A., & Eshaghirad, J. (2014). Earthworms as indicators for different forest management types and human disturbance in Ilam oak forest Iran. Folia Forestalia Polonica, Series A, 56, 121–134. https://doi.org/10.2478/ffp-2014-0013

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276

    Article  ADS  Google Scholar 

  • Hosseini, A., Hosseini, S. M., & Linares, J. C. (2017). Site factors and stand conditions associated with Persian oak decline in Zagros mountain forests. Forest Systems, 26, 1–13. https://doi.org/10.5424/fs/2017263-11298

    Article  Google Scholar 

  • Jian, S., Zhu, T., Wang, J., & Yan, D. (2022). The current and future potential geographical distribution and evolution process of Catalpa bungei in China. Forests, 13, 96. https://doi.org/10.3390/f13010096

    Article  Google Scholar 

  • Karami, M., Heydari, M., Sheykholeslami, A., Eshagh Nimvari, M., Omidipour, R., Yuan, Z., & Prevosto, B. (2022). Dieback intensity but not functional and taxonomic diversity indices predict forest productivity in different management conditions: Evidence from a semi-arid oak forest ecosystem. Journal of Arid Land, 14, 225–244. https://doi.org/10.1007/s40333-022-0006-z

    Article  Google Scholar 

  • Khwarahm, N. R. (2020). Map** current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region, Iraq. Ecological Processes, 9, 1–16. https://doi.org/10.1186/s13717-020-00259-0

    Article  Google Scholar 

  • Khwarahm, N. R., Ararat, K., Qader, S., & Al-Quraishi, A. M. F. (2021). Modelling habitat suitability for the breeding Egyptian vulture (Neophron percnopterus) in the Kurdistan Region of Iraq. Iranian Journal of Science and Technology, Transactions a: Science, 45, 1519–1530. https://doi.org/10.1007/s40995-021-01150-z

    Article  Google Scholar 

  • Khwarahm, N. R., Ararat, K., HamadAmin, B. A., Najmaddin, P. M., Rasul, A., & Qader, S. (2022). Spatial distribution modeling of the wild boar (Sus scrofa) under current and future climate conditions in Iraq. Biologia, 77, 369–383. https://doi.org/10.1007/s11756-021-00936-1

    Article  Google Scholar 

  • Koç, D. E., Svenning, J. C., & Meral, A. V. C. I. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6, 69–82.‏ https://doi.org/10.31195/ejejfs.435962

  • Koo, K. A., & Park, S. U. (2022). The effect of interplays among climate change, land-use change, and dispersal capacity on plant redistribution. Ecological Indicators, 142, 109192. https://doi.org/10.1016/j.ecolind.2022.109192

    Article  Google Scholar 

  • Koo, K. A., Park, S. U., Kong, W. S., Hong, S., Jang, I., & Seo, C. (2017). Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecological Modelling, 353, 17–27. https://doi.org/10.1016/j.ecolmodel.2016.10.007

    Article  CAS  Google Scholar 

  • Laxton, M. R., Rodríguez De Rivera, Ó., Soriano-Redondo, A., & Illian, J. B. (2023). Balancing structural complexity with ecological insight in Spatio-temporal species distribution models. Methods in Ecology and Evolution, 14, 162–172. https://doi.org/10.1111/2041-210X.13957

    Article  Google Scholar 

  • Lemes, P., Barbosa, F. G., Naimi, B., & Araújo, M. B. (2022). Dispersal abilities favor commensalism in animal-plant interactions under climate change. Science of the Total Environment, 835, 155157. https://doi.org/10.1016/j.scitotenv.2022.155157

    Article  ADS  PubMed  CAS  Google Scholar 

  • Mengist, W., Soromessa, T., & Feyisa, G. L. (2021). Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. Journal of Cleaner Production, 329, 129778. https://doi.org/10.1016/j.jclepro.2021.129778

    Article  Google Scholar 

  • Mirhashemi, H., Heydari, M., Ahmadi, K., Karami, O., Kavgaci, A., Matsui, T., & Heung, B. (2023). Species distribution models of Brant’s oak (Quercus brantii Lindl.): The impact of spatial database on predicting the impacts of climate change. Ecological Engineering, 194, 107038. https://doi.org/10.1016/j.ecoleng.2023.107038

    Article  Google Scholar 

  • Mohmmadi Samani, K., Pordel, N., Hosseini, V., & Shakeri, Z. (2020). Effect of land-use changes on chemical and physical properties of soil in western Iran (Zagros oak forests). Journal of Forestry Research, 31, 637–647. https://doi.org/10.1007/s11676-018-0799-y

    Article  CAS  Google Scholar 

  • Newbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B, 285. https://doi.org/10.1098/rspb.2018.0792

  • Nunez, S., & Alkemade, R. (2021). Exploring interaction effects from mechanisms between climate and land-use changes and the projected consequences on biodiversity. Biodiversity and Conservation, 30, 3685–3696. https://doi.org/10.1007/s10531-021-02271-y

    Article  Google Scholar 

  • Olfat, A. M., & Pourtahmasi, K. (2010). Anatomical characters in three oak species (Q. libani, Q. brantii and Q. infectoria) from Iranian Zagros Mountains. Australian Journal of Basic and Applied Sciences, 4, 3230–3237.

    Google Scholar 

  • Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5, 317–335. https://doi.org/10.1002/wcc.271

    Article  Google Scholar 

  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., & Dubash, N. K. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.

  • Pecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., & Chirici, G. (2019). Species distribution modelling to support forest management. A Literature Review. Ecological Modelling, 411, 108817. https://doi.org/10.1016/j.ecolmodel.2019.108817

    Article  Google Scholar 

  • Purohit, S., & Rawat, N. (2021). MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district, India. Modeling Earth Systems and Environment, 8, 2051–2063. https://doi.org/10.1007/s40808-021-01205-5

    Article  Google Scholar 

  • Radha, K. O., & Khwarahm, N. R. (2022). An Integrated Approach to Map the Impact of Climate Change on the Distributions of Crataegus azarolus and Crataegus monogyna in Kurdistan Region, Iraq. Sustainability, 14, 14621. https://doi.org/10.3390/su142114621

    Article  Google Scholar 

  • Ramachandran, R. M., Roy, P. S., Chakravarthi, V., Joshi, P. K., & Sanjay, J. (2020). Land use and climate change impacts on distribution of plant species of conservation value in Eastern Ghats, India: A simulation study. Environmental Monitoring and Assessment, 192, 1–21. https://doi.org/10.1007/s10661-019-8044-5

    Article  Google Scholar 

  • Safaei, M., Rezayan, H., Firouzabadi, P. Z., & Sadidi, J. (2021). Optimization of species distribution models using a genetic algorithm for simulating climate change effects on Zagros forests in Iran. Ecological Informatics, 63, 101288. https://doi.org/10.1016/j.ecoinf.2021.101288

    Article  Google Scholar 

  • Sarıkaya, A. G., & Örücü, Ö. K. (2019). Prediction of potential and future distribution areas of Anatolian Chesnut (Castanea sativa Mill.) by using maximum entropy (Maxent) modeling depending on climate change in Turkey. International Journal Of Ecosystems And Ecology Science-Ijees, 9.‏ https://doi.org/10.31407/ijees9415

  • Shabani, F., Kumar, L., & Ahmadi, M. (2016). A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution, 6, 5973–5986. https://doi.org/10.1002/ece3.2332

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiravand, H., & Hosseini, S. A. (2020). A new evaluation of the influence of climate change on Zagros oak forest dieback in Iran. Theoretical and Applied Climatology, 141, 685–697. https://doi.org/10.1007/s00704-020-03226-z

    Article  ADS  Google Scholar 

  • Sirami, C., Caplat, P., Popy, S., Clamens, A., Arlettaz, R., Jiguet, F., Brotons, L., & Martin, J. L. (2017). Impacts of global change on species distributions: Obstacles and solutions to integrate climate and land use. Global Ecology and Biogeography, 26, 385–394. https://doi.org/10.1111/geb.12555

    Article  Google Scholar 

  • Srivastava, V., Lafond, V. & Griess, V. C. (2019). Species distribution models (SDM): applications, benefits and challenges in invasive species management. CABI Reviews, pp.1–13. https://doi.org/10.1079/PAVSNNR201914020

  • Stewart, S. B., Fedrigo, M., Kasel, S., Roxburgh, S. H., Choden, K., Tenzin, K., Allen, K., & Nitschke, C. R. (2022). Predicting plant species distributions using climate-based model ensembles with corresponding measures of congruence and uncertainty. Diversity and Distributions, 28, 1105–1122. https://doi.org/10.1111/ddi.13515

    Article  Google Scholar 

  • Sun, W., Ding, X., Su, J., Mu, X., Zhang, Y., Gao, P., & Zhao, G. (2022). Land use and cover changes on the Loess Plateau: A comparison of six global or national land use and cover datasets. Land Use Policy, 119, 106165. https://doi.org/10.1016/j.landusepol.2022.106165

    Article  Google Scholar 

  • Taghipour, K., Heydari, M., Kooch, Y., Fathizad, H., Heung, B., & Taghizadeh-Mehrjardi, R. (2022). Assessing changes in soil quality between protected and degraded forests using digital soil map** for semiarid oak forests Iran. Catena, 213, 106204. https://doi.org/10.1016/j.catena.2022.106204

    Article  Google Scholar 

  • Tarnian, F., Kumar, S., Azarnivand, H., Zare Chahouki, M. A., & Mirzaei Mossivand, A. (2021). Assessing the effects of climate change on the distribution of Daphne mucronata in Iran. Environmental Monitoring and Assessment, 193, 1–19. https://doi.org/10.1007/s10661-021-09311-8

    Article  CAS  Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32, 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

    Article  ADS  Google Scholar 

  • Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). Ensemble platform for species distribution modeling. R Package Version, 3–1.

  • Thurm, E. A., Hernandez, L., Baltensweiler, A., Ayan, S., Rasztovits, E., Bielak, K., ... & Falk, W. (2018). Alternative tree species under climate warming in managed European forests. Forest Ecology and Management, 430, 485–497.‏ https://doi.org/10.1016/j.foreco.2018.08.028

  • Valavi, R., Shafizadeh-Moghadam, H., Matkan, A., Shakiba, A., Mirbagheri, B., & Kia, S. H. (2019). Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology, 137, 1015–1025. https://doi.org/10.1007/s00704-018-2625-z

    Article  ADS  Google Scholar 

  • Wouyou, H. G., Lokonon, B. E., Idohou, R., Zossou-Akete, A. G., Assogbadjo, A. E., & Kakaï, R. G. (2022). Predicting the potential impacts of climate change on the endangered Caesalpinia bonduc (L.) Roxb in Benin (West Africa). Heliyon, 8, e09022. https://doi.org/10.1016/j.heliyon.2022.e09022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, F., Wang, T., Groen, T. A., Skidmore, A. K., Yang, X., Ma, K., & Wu, Z. (2019). Climate and land use changes will degrade the distribution of Rhododendrons in China. Science of the Total Environment, 659, 515–528. https://doi.org/10.1016/j.scitotenv.2018.12.223

    Article  ADS  PubMed  CAS  Google Scholar 

  • Zhang, J., Nielsen, S. E., Stolar, J., Chen, Y., & Thuiller, W. (2015). Gains and losses of plant species and phylogenetic diversity for a northern high-latitude region. Diversity and Distributions, 21, 1441–1454. https://doi.org/10.1111/ddi.12365

    Article  Google Scholar 

  • Zhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112

    Article  ADS  PubMed  CAS  Google Scholar 

  • Zohary, M. (1973). Geobotanical foundation of the Middle East–Gustav Fische Verlag. Stuttgart, Germany. ASIN B0006CB7Z4.

Download references

Funding

This research was financially supported by Ilam University, Ilam, Iran.

Author information

Authors and Affiliations

Authors

Contributions

H.M, K.A., and M.H: Conceptualization, methodology, data curation, resources, formal analysis, software, visualization, supervision, writing (original draft), writing (review and editing). O.K: Data curation, investigation, writing—original draft. O.V. and NN.R.K: Writing—review and editing.

Corresponding author

Correspondence to Mehdi Heydari.

Ethics declarations

Ethical approval

All authors have read, have understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Consent for publication

The authors certify that the publisher is permitted to publish this work.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirhashemi, H., Ahmadi, K., Heydari, M. et al. Climatic variables are more effective on the spatial distribution of oak forests than land use change across their historical range. Environ Monit Assess 196, 289 (2024). https://doi.org/10.1007/s10661-024-12438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12438-z

Keywords

Navigation