Log in

Improved soil carbon stock spatial prediction in a Mediterranean soil erosion site through robust machine learning techniques

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil serves as a reservoir for organic carbon stock, which indicates soil quality and fertility within the terrestrial ecosystem. Therefore, it is crucial to comprehend the spatial distribution of soil organic carbon stock (SOCS) and the factors influencing it to achieve sustainable practices and ensure soil health. Thus, the present study aimed to apply four machine learning (ML) models, namely, random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), and Cubist model tree (Cubist), to improve the prediction of SOCS in the Srou catchment located in the Upper Oum Er-Rbia watershed, Morocco. From an inventory of 120 sample points, 80% were used for training the model, with the remaining 20% set aside for model testing. Boruta’s algorithm and the multicollinearity test identified only nine (9) factors as the controlling factors selected as input data for predicting SOCS. As a result, spatial distribution maps for SOCS were generated for all models, then compared, and further validated using statistical metrics. Among the models tested, the RF model exhibited the best performance (R2 = 0.76, RMSE = 0.52 Mg C/ha, NRMSE = 0.13, and MAE = 0.34 Mg C/ha), followed closely by the SVM model (R2 = 0.68, RMSE = 0.59 Mg C/ha, NRMSE = 0.15, and MAE = 0.34 Mg C/ha) and Cubist model (R2 = 0.64, RMSE = 0.63 Mg C/ha, NRMSE = 0.16, and MAE = 0.43 Mg C/ha), while the kNN model had the lowest performance (R2 = 0.31, RMSE = 0.94 Mg C/ha, NRMSE = 0.24, and MAE = 0.63 Mg C/ha). However, bulk density, pH, electrical conductivity, and calcium carbonate were the most important factors for spatially predicting SOCS in this semi-arid region. Hence, the methodology used in this study, which relies on ML algorithms, holds the potential for modeling and map** SOCS and soil properties in comparable contexts elsewhere.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used can be made available upon request from the first author.

References

  • Adams, W. A. (1973). The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. Journal of Soil Science, 24(1), 10–17. https://doi.org/10.1111/j.1365-2389.1973.tb00737.x

    Article  Google Scholar 

  • Adhikari, K., Owens, P. R., Libohova, Z., Miller, D. M., Wills, S. A., & Nemecek, J. (2019). Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Science of the Total Environment, 667, 833–845. https://doi.org/10.1016/j.scitotenv.2019.02.420

    Article  ADS  CAS  PubMed  Google Scholar 

  • Afnor. (1996). Qualité des sols. Recueil de normes françaises. In.

    Google Scholar 

  • Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., & Nauss, T. (2015). Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spatial Statistics, 14, 91–113. https://doi.org/10.1016/j.spasta.2015.05.008

    Article  MathSciNet  Google Scholar 

  • Bae, J., & Ryu, Y. (2020). High soil organic carbon stocks under impervious surfaces contributed by urban deep cultural layers. Landscape and Urban Planning, 204. https://doi.org/10.1016/j.landurbplan.2020.103953

  • Barakat, A., El Baghdadi, M., Rais, J., & Nadem, S. (2012). Assessment of heavy metal in surface sediments of Day River at Beni-Mellal region, Morocco. Research Journal of Environmental and Earth Sciences, 4(8), 797–806.

    CAS  Google Scholar 

  • Barakat, A., Ouargaf, Z., & Touhami, F. (2016). Identification of potential areas hosting aggregate resources using GIS method: A case study of Tadla-Azilal region, Morocco. Environmental Earth Sciences, 75(9). https://doi.org/10.1007/s12665-016-5613-6

  • Barakat, A., Khellouk, R., & Touhami, F. (2021). Detection of urban LULC changes and its effect on soil organic carbon stocks: A case study of Béni Mellal City (Morocco). Journal of Sedimentary Environments, 6(2), 287–299. https://doi.org/10.1007/s43217-020-00047-y

    Article  ADS  Google Scholar 

  • Barakat, A., Rafai, M., Mosaid, H., Islam, M. S., & Saeed, S. (2022a). Map** of water-induced soil erosion using machine learning models: A case study of Oum Er Rbia Basin (Morocco). Earth Systems and Environment, 7(1), 151–170. https://doi.org/10.1007/s41748-022-00317-x

    Article  ADS  Google Scholar 

  • Barakat, A., Khellouk, R., Ennaji, W., & Mosaid, H. (2022b). Investigation of heavy metal contamination and ecological and health risks in farmland soils from southeastern phosphate plateaus of Khouribga (Morocco). Ecological Questions, 33(4), 1–27. https://doi.org/10.12775/EQ.2022.036

    Article  Google Scholar 

  • Borrelli, P., Ballabio, C., Panagos, P., & Montanarella, L. (2014). Wind erosion susceptibility of European soils. Geoderma, 232-234, 471–478. https://doi.org/10.1016/j.geoderma.2014.06.008

    Article  ADS  Google Scholar 

  • Brady, N., & Weil, R. (2007). The nature and properties of soils. 14. udgave. Pearson.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324

    Article  Google Scholar 

  • Clivot, H., Mouny, J.-C., Duparque, A., Dinh, J.-L., Denoroy, P., Houot, S., Vertès, F., Trochard, R., Bouthier, A., Sagot, S., & Mary, B. (2019). Modeling soil organic carbon evolution in long-term arable experiments with AMG model. Environmental Modelling & Software, 118, 99–113. https://doi.org/10.1016/j.envsoft.2019.04.004

    Article  Google Scholar 

  • Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klír, J., Körschens, M., Poulton, P. R., & Richter, D. D. (1997). Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma, 81(1-2), 29–44. https://doi.org/10.1016/s0016-7061(97)00079-7

    Article  ADS  Google Scholar 

  • Costantini, E. A. C., Castaldini, M., Diago, M. P., Giffard, B., Lagomarsino, A., Schroers, H. J., Priori, S., Valboa, G., Agnelli, A. E., Akca, E., D'Avino, L., Fulchin, E., Gagnarli, E., Kiraz, M. E., Knapic, M., Pelengic, R., Pellegrini, S., Perria, R., Puccioni, S., et al. (2018). Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards. Journal of Environmental Management, 223, 614–624. https://doi.org/10.1016/j.jenvman.2018.06.065

    Article  CAS  PubMed  Google Scholar 

  • Dai, L., Ge, J., Wang, L., Zhang, Q., Liang, T., Bolan, N., Lischeid, G., & Rinklebe, J. (2022). Influence of soil properties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet plateau based on random forest regression and structural equation modeling. Science of the Total Environment, 821, 153440. https://doi.org/10.1016/j.scitotenv.2022.153440

    Article  ADS  CAS  PubMed  Google Scholar 

  • de Nijs, E. A., & Cammeraat, E. L. H. (2020). The stability and fate of soil organic carbon during the transport phase of soil erosion. Earth-Science Reviews, 201. https://doi.org/10.1016/j.earscirev.2019.103067

  • Diaz-Uriarte, R., & Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3. https://doi.org/10.1186/1471-2105-7-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., & Fiener, P. (2016). Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Reviews, 154, 102–122. https://doi.org/10.1016/j.earscirev.2015.12.005

    Article  ADS  CAS  Google Scholar 

  • El Baghdadi, M., Barakat, A., Sajieddine, M., & Nadem, S. (2011). Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco). Environmental Earth Sciences, 66(1), 141–155. https://doi.org/10.1007/s12665-011-1215-5

    Article  CAS  Google Scholar 

  • El Jazouli, A., Barakat, A., & Khellouk, R. (2019). GIS-multicriteria evaluation using AHP for landslide susceptibility map** in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6(1), 1–12. https://doi.org/10.1186/s40677-019-0119-7

    Article  Google Scholar 

  • Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., & Scholten, T. (2020). Predicting and map** of soil organic carbon using machine learning algorithms in northern Iran. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142234

  • Faouzi, E., Arioua, A., Namous, M., Barakat, A., Mosaid, H., Ismaili, M., Eloudi, H., & Hanadé Houmma, I. (2023). Spatial map** of hydrologic soil groups using machine learning in the Mediterranean region. Catena, 232. https://doi.org/10.1016/j.catena.2023.107364

  • Fix, E., & Hodges, J. L. (1989). Discriminatory analysis. Nonparametric discrimination: Consistency properties. International Statistical Review / Revue Internationale de Statistique, 57(3). https://doi.org/10.2307/1403797

  • Forkuor, G., Hounkpatin, O. K., Welp, G., & Thiel, M. (2017). High resolution map** of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS One, 12(1), e0170478. https://doi.org/10.1371/journal.pone.0170478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3

    Article  ADS  Google Scholar 

  • Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the Total Environment, 668, 124–138. https://doi.org/10.1016/j.scitotenv.2019.02.436

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gelaw, A. M., Singh, B. R., & Lal, R. (2013). Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in Tigray, northern Ethiopia. Land Degradation & Development, 26(7), 690–700. https://doi.org/10.1002/ldr.2261

    Article  Google Scholar 

  • Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and map** soil organic carbon stocks in Brazil. Geoderma, 340, 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007

    Article  ADS  CAS  Google Scholar 

  • Gregorich, E. G., Greer, K. J., Anderson, D. W., & Liang, B. C. (1998). Carbon distribution and losses: Erosion and deposition effects. Soil and Tillage Research, 47(3-4), 291–302. https://doi.org/10.1016/s0167-1987(98)00117-2

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for map** global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2), 127–140. https://doi.org/10.1016/0034-4257(95)00137-p

    Article  ADS  Google Scholar 

  • He, Q. P., & Wang, J. (2007). Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 20(4), 345–354. https://doi.org/10.1109/tsm.2007.907607

    Article  Google Scholar 

  • Hiederer, R., & Köchy, M. (2011). Global soil organic carbon estimates and the harmonized world soil database. Publications Office of the European Union, 79(25225), 10.2788. https://doi.org/10.2788/13267

    Article  Google Scholar 

  • Hilali, A., El Baghdadi, M., Barakat, A., Ennaji, W., & El Hamzaoui, E. H. (2020). Contribution of GIS techniques and pollution indices in the assessment of metal pollution in agricultural soils irrigated with wastewater: Case of the Day River, Beni Mellal (Morocco). Euro-Mediterranean Journal for Environmental Integration, 5(3). https://doi.org/10.1007/s41207-020-00186-8

  • Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Article  ADS  Google Scholar 

  • Ismaili, M., Krimissa, S., Namous, M., Htitiou, A., Abdelrahman, K., Fnais, M. S., Lhissou, R., Eloudi, H., Faouzi, E., & Benabdelouahab, T. (2023). Assessment of soil suitability using machine learning in arid and semi-arid regions. Agronomy, 13(1). https://doi.org/10.3390/agronomy13010165

  • John, K., Abraham Isong, I., Michael Kebonye, N., Okon Ayito, E., Chapman Agyeman, P., & Marcus Afu, S. (2020). Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. Land, 9(12). https://doi.org/10.3390/land9120487

  • John, K., Kebonye, N. M., Agyeman, P. C., & Ahado, S. K. (2021). Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data. Environmental Monitoring and Assessment, 193(4), 197. https://doi.org/10.1007/s10661-021-08946-x

    Article  CAS  PubMed  Google Scholar 

  • Khellouk, R., Barakat, A., Boudhar, A., Hadria, R., Lionboui, H., El Jazouli, A., Rais, J., El Baghdadi, M., & Benabdelouahab, T. (2018). Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: A case study in a semi-arid area. Journal of Spatial Science, 65(3), 481–499. https://doi.org/10.1080/14498596.2018.1499559

    Article  Google Scholar 

  • Kirkels, F. M. S. A., Cammeraat, L. H., & Kuhn, N. J. (2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes — A review of different concepts. Geomorphology, 226, 94–105. https://doi.org/10.1016/j.geomorph.2014.07.023

    Article  ADS  Google Scholar 

  • Kuhn, M., Weston, S., Keefer, C., Coulter, N., & Quinlan, R. (2014). Cubist: Rule-and instance-based regression modeling, R package version 0.0. 18. In: Vienna, Austria: CRAN.

  • Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the Boruta package. Journal of statistical software, 36, 1–13.

    Article  Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7

    Article  CAS  PubMed  Google Scholar 

  • LEAP, F. (2019). Measuring and modelling soil carbon stocks and stock changes in livestock production systems: Guidelines for assessment (version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. Rome, FAO, 170.

  • Li, L., Lu, J., Wang, S., Ma, Y., Wei, Q., Li, X., Cong, R., & Ren, T. (2016). Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Industrial Crops and Products, 91, 194–204. https://doi.org/10.1016/j.indcrop.2016.07.008

    Article  CAS  Google Scholar 

  • Li, Q. Q., Zhang, H., Jiang, X. Y., Luo, Y., Wang, C. Q., Yue, T. X., Li, B., & Gao, X. S. (2017). Spatially distributed modeling of soil organic carbon across China with improved accuracy. Journal of Advances in Modeling Earth Systems, 9(2), 1167–1185. https://doi.org/10.1002/2016MS000827

    Article  ADS  Google Scholar 

  • Li, T., Zhang, H., Wang, X., Cheng, S., Fang, H., Liu, G., & Yuan, W. (2019). Soil erosion affects variations of soil organic carbon and soil respiration along a slope in northeast China. Ecological Processes, 8(1). https://doi.org/10.1186/s13717-019-0184-6

  • Maanan, M., Karim, A., & K., Ajrhough, Rueff, Snoussi, & Rhinane. (2019). Modelling the potential impacts of land use/cover change on terrestrial carbon stocks in north-west Morocco. The International Journal of Sustainable Development and World Ecology, 26(6), 560–570. https://doi.org/10.1080/13504509.2019.1633706

    Article  Google Scholar 

  • Martinezmena, M., Lopez, J., Almagro, M., Boixfayos, C., & Albaladejo, J. (2008). Effect of water erosion and cultivation on the soil carbon stock in a semi-arid area of south-east Spain. Soil and Tillage Research, 99(1), 119–129. https://doi.org/10.1016/j.still.2008.01.009

    Article  Google Scholar 

  • Meliho, M., Boulmane, M., Khattabi, A., Dansou, C. E., Orlando, C. A., Mhammdi, N., & Noumonvi, K. D. (2023). Spatial prediction of soil organic carbon stock in the Moroccan High Atlas using machine learning. Remote Sensing, 15(10). https://doi.org/10.3390/rs15102494

  • Mitchell, T. M. (1997). Does machine learning really work? AI Magazine, 18(3), 11. https://doi.org/10.1609/aimag.v18i3.1303

    Article  Google Scholar 

  • Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268–13272. https://doi.org/10.1073/pnas.0611508104

    Article  ADS  CAS  Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103

    Article  ADS  Google Scholar 

  • Mosaid, H., Barakat, A., Bustillo, V., & Rais, J. (2022). Modeling and map** of soil water erosion risks in the Srou Basin (Middle Atlas, Morocco) using the EPM model, GIS and magnetic susceptibility. Journal of Landscape Ecology, 15(1), 126–147. https://doi.org/10.2478/jlecol-2022-0007

    Article  Google Scholar 

  • Mosleh, Z., Salehi, M. H., Jafari, A., Borujeni, I. E., & Mehnatkesh, A. (2016). The effectiveness of digital soil map** to predict soil properties over low-relief areas. Environmental Monitoring and Assessment, 188(3), 195. https://doi.org/10.1007/s10661-016-5204-8

    Article  CAS  PubMed  Google Scholar 

  • Moussadek, R., Mrabet, R., Dahan, R., Zouahri, A., El Mourid, M., & Ranst, E. V. (2014). Tillage system affects soil organic carbon storage and quality in central Morocco. Applied and Environmental Soil Science, 2014, 1–8. https://doi.org/10.1155/2014/654796

    Article  CAS  Google Scholar 

  • Musthofa, F., Widyatmanti, W., Arjasakusuma, S., Umarhadi, D. A., Putri, D. A., Raharja, F. F., & Arrasyid, M. K. (2022). Machine learning for map** spatial distribution of thickness and carbon stock of tropical peatland based on remote sensing data: A case study in Lake Sentarum National Park, Indonesia. Geographia Technica, 17(1/2022), 46–57. https://doi.org/10.21163/gt_2022.171.04

    Article  Google Scholar 

  • Namous, M., Hssaisoune, M., Pradhan, B., Lee, C.-W., Alamri, A., Elaloui, A., Edahbi, M., Krimissa, S., Eloudi, H., Ouayah, M., Elhimer, H., & Tagma, T. (2021). Spatial prediction of groundwater potentiality in large semi-arid and karstic mountainous region using machine learning models. Water, 13(16). https://doi.org/10.3390/w13162273

  • Navidi, M. N., Seyedmohammadi, J., & McDowell, R. W. (2022). A proposed new approach to identify limiting factors in assessing land suitability for sustainable land management. Communications in Soil Science and Plant Analysis, 53(19), 2558–2573. https://doi.org/10.1080/00103624.2022.2072511

    Article  CAS  Google Scholar 

  • Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B. A. S., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone - Carbon response functions as a model approach. Global Change Biology, 17(7), 2415–2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x

    Article  ADS  Google Scholar 

  • Quinlan, J. R. (1992). Learning with continuous classes. In: 5th Australian joint conference on artificial intelligence (Vol. 92, pp. 343–348). World Scientific.

  • Raciti, S. M., Hutyra, L. R., & Finzi, A. C. (2012). Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environmental Pollution, 164, 248–251. https://doi.org/10.1016/j.envpol.2012.01.046

    Article  CAS  PubMed  Google Scholar 

  • Reza, S. K., Nayak, D. C., Chattopadhyay, T., Mukhopadhyay, S., Singh, S. K., & Srinivasan, R. (2015). Spatial distribution of soil physical properties of alluvial soils: A geostatistical approach. Archives of Agronomy and Soil Science, 62(7), 972–981. https://doi.org/10.1080/03650340.2015.1107678

    Article  Google Scholar 

  • Rodríguez-Murillo, J. C. (2001). Organic carbon content under different types of land use and soil in peninsular Spain. Biology and Fertility of Soils, 33(1), 53–61. https://doi.org/10.1007/s003740000289

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA special publications, 351(1), 309.

    ADS  Google Scholar 

  • Santos, D., Cardoso-Fernandes, J., Lima, A., Müller, A., Brönner, M., & Teodoro, A. C. (2022). Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF pegmatites in Tysfjord, Norway. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153532

  • Schillaci, C., Saia, S., Lipani, A., Perego, A., Zaccone, C., & Acutis, M. (2021). Validating the regional estimates of changes in soil organic carbon by using the data from paired-sites: The case study of Mediterranean arable lands. Carbon Balance and Management, 16(1), 19. https://doi.org/10.1186/s13021-021-00182-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Seyedmohammadi, J., & Navidi, M. N. (2022). Applying fuzzy inference system and analytic network process based on GIS to determine land suitability potential for agricultural. Environmental Monitoring and Assessment, 194(10), 712. https://doi.org/10.1007/s10661-022-10327-x

    Article  CAS  PubMed  Google Scholar 

  • Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., & McDowell, R. W. (2018). Integration of ANP and fuzzy set techniques for land suitability assessment based on remote sensing and GIS for irrigated maize cultivation. Archives of Agronomy and Soil Science, 65(8), 1063–1079. https://doi.org/10.1080/03650340.2018.1549363

    Article  CAS  Google Scholar 

  • Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., & McDowell, R. W. (2019). Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture. Geoderma, 352, 80–95. https://doi.org/10.1016/j.geoderma.2019.05.046

    Article  ADS  CAS  Google Scholar 

  • Seyedmohammadi, J., Zeinadini, A., Navidi, M. N., & McDowell, R. W. (2023). A new robust hybrid model based on support vector machine and firefly meta-heuristic algorithm to predict pistachio yields and select effective soil variables. Ecological Informatics, 74. https://doi.org/10.1016/j.ecoinf.2023.102002

  • Shao-qiang, W., Cheng-hu, Z., Ke-rang, L., Song-li, Z., & Fang-hong, H. (2001). Estimation of soil organic carbon reservoir in China. Journal of Geographical Sciences, 11, 3–13. https://doi.org/10.1007/BF02837371

    Article  Google Scholar 

  • Sharma, G., Sharma, L. K., & Sharma, K. C. (2019). Assessment of land use change and its effect on soil carbon stock using multitemporal satellite data in semi-arid region of Rajasthan, India. Ecological Processes, 8(1). https://doi.org/10.1186/s13717-019-0193-5

  • Siewert, M. B. (2018). High-resolution digital map** of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences, 15(6), 1663–1682. https://doi.org/10.5194/bg-15-1663-2018

    Article  ADS  Google Scholar 

  • Silatsa, F. B. T., Yemefack, M., Tabi, F. O., Heuvelink, G. B. M., & Leenaars, J. G. B. (2020). Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma, 367. https://doi.org/10.1016/j.geoderma.2020.114260

  • Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. I. (2020). A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in swiss forest soils. Frontiers in Forests and Global Change, 3. https://doi.org/10.3389/ffgc.2020.00098

  • Starr, G., Lal, R., Kimble, J., & Owens, L. (2001). Assessing the impact of erosion on soil organic carbon pools and fluxes.

    Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Landslide susceptibility map** at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers & Geosciences, 45, 199–211. https://doi.org/10.1016/j.cageo.2011.10.031

    Article  ADS  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  ADS  Google Scholar 

  • Van Bemmelen, J. (1890). Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans usw im Ackerboden. Die Landwirthschaftlichen Versuchs-Stationen, 37(279), e290.

    Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory, 840 Springer-Verlag New York. Inc., New York, NY, USA, 841, 842.

  • Vargas-Rojas, R., Cuevas-Corona, R., Yigini, Y., Tong, Y., Bazza, Z., & Wiese, L. (2019). Unlocking the potential of soil organic carbon: A feasible way forward. In H. Ginzky, E. Dooley, I. L. Heuser, E. Kasimbazi, T. Markus, & T. Qin (Eds.), International yearbook of soil law and policy 2018 (pp. 373–395). Springer International Publishing.

    Chapter  Google Scholar 

  • Vasu, N. N., & Lee, S.-R. (2016). A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea. Geomorphology, 263, 50–70. https://doi.org/10.1016/j.geomorph.2016.03.023

    Article  ADS  Google Scholar 

  • Wang, B., Waters, C., Orgill, S., Cowie, A., Clark, A., Li Liu, D., Simpson, M., McGowen, I., & Sides, T. (2018). Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecological Indicators, 88, 425–438. https://doi.org/10.1016/j.ecolind.2018.01.049

    Article  CAS  Google Scholar 

  • Were, K., Bui, D. T., Dick, Ø. B., & Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and map** soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394–403. https://doi.org/10.1016/j.ecolind.2014.12.028

    Article  CAS  Google Scholar 

  • Whitehead, D., Baisden, T., Campbell, D., Curtin, D., Davis, M. R., Hedley, C. B., Beare, D. M., Jones, H., Kelliher, F. M., & Saggar, S. (2012). Review of soil carbon measurement methodologies and technologies, including nature and intensity of sampling, their uncertainties and costs: Ministry for Primary Industries.

    Google Scholar 

  • **ao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L., & Zhang, X. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233. https://doi.org/10.1016/j.rse.2019.111383

  • Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci Total Environ, 557-558, 838–850. https://doi.org/10.1016/j.scitotenv.2016.03.085

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zaher, H., Sabir, M., Benjelloun, H., & Paul-Igor, H. (2020). Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. Journal of Environmental Management, 254, 109544. https://doi.org/10.1016/j.jenvman.2019.109544

    Article  CAS  PubMed  Google Scholar 

  • Zeraatpisheh, M., Garosi, Y., Reza Owliaie, H., Ayoubi, S., Taghizadeh-Mehrjardi, R., Scholten, T., & Xu, M. (2022). Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena, 208. https://doi.org/10.1016/j.catena.2021.105723

  • Zhang, Y., Sui, B., Shen, H., & Ouyang, L. (2019). Map** stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Computers and Electronics in Agriculture, 160, 23–30. https://doi.org/10.1016/j.compag.2019.03.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing—original draft, Hassan Mosaid and Ahmed Barakat; methodology, Hassan Mosaid and Ahmed Barakat; data sampling and analysis, Hassan Mosaid, Mohamed El Garnaoui; software, Hassan Mosaid and Kingsley John; supervision, Ahmed Barakat; review and editing, Hassan Mosaid, Ahmed Barakat, Kingsley John, Elhousna Faouzi, Brandon Heung, and Vincent Bustillo. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hassan Mosaid.

Ethics declarations

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Ethics approval

This article contains no studies with human participants or animals performed by any of the authors.

Informed consent

None.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaid, H., Barakat, A., John, K. et al. Improved soil carbon stock spatial prediction in a Mediterranean soil erosion site through robust machine learning techniques. Environ Monit Assess 196, 130 (2024). https://doi.org/10.1007/s10661-024-12294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12294-x

Keywords

Navigation